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1 Introduction

As certain regions serve as engines of economic opportunity, why are others trapped in a state

of persistent decline? The consequences of adverse shocks in one generation often persist into

the next, potentially weakening a community’s capacity to adapt to new challenges. This paper

examines one mechanism through which regions decline: selective migration. By inducing se-

lective migration (i.e., reducing the human capital endowment) in affected communities, adverse

shocks may differentially influence how places adjust to shocks in future periods. I study this

phenomenon in the context of the ongoing transition away from carbon-intensive energy sources.

Large-scale declines in demand for coal have had differential effects across places, driven by the

geographic concentration of industry activity and the legacy of historical shocks that altered the

population composition and economic trajectory of exposed places. Understanding how historical

shocks shape the adjustment to contemporary industry contractions offers broader insights into

the mechanisms driving regional economic decline.

In this paper, I present a graphical version of a spatial equilibrium model that describes how

adverse shocks in one period reverberate into the next. The model implies that adverse shocks will

negatively influence the skill composition of exposed communities, and this selective migration

stifles economic activity such that future generations are more vulnerable to subsequent adverse

shocks. I apply the model’s hypotheses in Appalachia’s coal country, which has been subject to

recurrent adverse local shocks resulting from macroeconomic shifts in demand for coal through-

out history. Between 2007 and 2017, coal mining employment declined by nearly 50 percent in

Appalachia, largely thanks to the sudden introduction of cheap natural gas made available by hy-

draulic fracturing technology, which rapidly altered the electricity-generating landscape as well

as the terms of trade for communities that specialized in coal mining (Kolstad, 2017; Linn and

McCormack, 2019; Coglianese et al., 2020). This recent episode is, however, dwarfed by the de-

cline in Appalachian coal employment that occurred during the 1980s. Driven by falling coal and

oil prices, improvements in mining technology, and the introduction of more accessible Western

coal reserves, this historical coal bust led to large increases in transfer payments and negative

spillovers into other employment sectors, among other adverse economic consequences (Black et

al., 2002, 2003, 2005a).

Importantly, these two major, unexpected declines in demand for coal (i.e., “coal shocks”) oc-

curred amidst the backdrop of expansions and contractions in other industries which differentially
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affected places based on the regional concentration of industry employment. I exploit variation

in county-level exposure to these employment shifts to investigate how the region adjusted to the

contemporary (2007–2017) coal shock, and then estimate the extent to which this adjustment pro-

cess can be explained by the persistent consequences of historical shocks on the human capital

endowment of affected communities. I first leverage a Bartik shift-share instrument to examine

how Appalachian communities adjusted to the 2007–2017 coal shock along various employment

and population margins. I estimate that a 1 standard deviation increase in the coal shock reduces

county-level employment by 5 percent, reduces the working-age adult population by 2.4 percent,

and reduces the employment rate by 1.5 percentage points. Population losses are larger among the

college-educated, and this selective migration grows over progressively longer time horizons. Av-

erage earnings losses are driven by the most immobile group of residents, such that the incidence

of the demand shock likely falls on residents who remain in exposed communities.

I next estimate the extent to which employment and population adjustments to the 2007–

2017 coal shock depend on a place’s history of selective migration. The identification strategy

is based on the insight that the gravity structure of trade and the bilateral nature of migration

decisions mean that places more proximate to growing economies are relatively more attractive

for better-educated workers. Exploiting differential spatial proximity to employment shocks in

other labor markets during the 1980s, I predict the magnitude of selective migration in each Ap-

palachian county during the 1980–1990 decade. Re-estimating the effect of the recent coal shock

across counties with varying historical migration flows reveals that places with greater histori-

cal declines in college-educated adults experienced substantially larger adjustment costs resulting

from the 2007–2017 coal shock. The employment, population, and earnings adjustment to the

coal shock are between 2 and 4 times larger in the quartile of counties with the greatest levels of

selective migration predicted by employment shocks in preceding periods. This result is robust

to different methods of predicting migration flows, controlling for historical employment shocks,

alternative definitions of selective migration, and other specification choices. Consistent with the

model describing how the consequences of adverse shocks persist across generations, I present

evidence that selective migration suppresses business formation in subsequent periods. By alter-

ing the population and economic trajectory of exposed places, adverse shocks reinforce a process

of decline, making certain regions more vulnerable to the consequences of subsequent shocks.

This paper contributes to several strands of literature. First, it provides new insights into the

persistent effects of labor demand shocks and one of the mechanisms underlying regional decline.
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A growing body of research considers the transitional costs of sectoral reallocation, examining the

effects of labor demand shocks on various outcomes including earnings, health, marriage rates,

and migration. Population mobility from under-performing areas is an important re-equilibrating

force following employment shocks (Blanchard and Katz, 1992). However, increasingly sluggish

migration adjustments over time may deepen persistent regional income disparities (Amior and

Manning, 2018; Zabek, 2024), pushing communities to adjust along other margins, such as re-

duced employment, lower wages, and greater reliance on government transfer payments (e.g.,

Molloy et al., 2011; Dao et al., 2017; Amior and Manning, 2018; Charles et al., 2019; Notowidigdo,

2020).1 Still, internal migration remains an important channel through which workers arbitrage

real wage differentials across place, and this is especially true for better-educated workers (Topel,

1986; Bound and Holzer, 2000; Glaeser and Gyourko, 2005; Wozniak, 2010).2 The selectivity of

population mobility has helped drive broader patterns of diverging economic performance across

regions (Long, 1988; Diamond, 2016; Ganong and Shoag, 2017; Autor, 2019).

I contribute to this literature by exploring how exogenously driven declines in human capital

endowments — i.e., brain drain — shape the capacity for places to adjust to future shocks. To the

extent that the stock of human capital is important to the trajectory of local economic activity

(Glaeser et al., 1995; Glaeser, 2005; Bollinger et al., 2011; Gennaioli et al., 2014; Islam et al., 2015;

Fluegge, 2022; Gagliardi et al., 2023), selective migration induced by shocks in one period may

weaken a place’s capacity to recover from shocks in the future. A closely related paper is Gagliardi

et al. (2023), which shows that manufacturing hubs with higher initial college shares recovered

more rapidly from deindustrialization. While their focus is on contemporaneous heterogeneity in

human capital at the onset of decline, I emphasize its historical origins — showing how earlier

shocks shaped the skill composition of local labor markets and influenced the adjustment to later

shocks. In doing so, I provide new evidence on how selective migration reinforces regional decline

and long-run spatial divergence.

Second, this paper contributes to the growing body of research on the economic conse-

quences of energy transitions. Compared to the extensive literature on shocks to manufacturing

employment caused by import penetration and other macroeconomic shifts (e.g., Autor et al., 2013;

1Evidence of the secular decline in internal migration and possible explanations for low rates of mobility, including
migration frictions and local ties, is offered by Mincer (1978); Molloy et al. (2011, 2014); Alesina et al. (2015); Molloy et
al. (2017); Huttunen et al. (2018); Coate et al. (2019) and Zabek (2024).

2Numerous explanations for the selectivity of migration have been forwarded, including variation in the receipt
of government transfers and the returns to migration across types of worker (e.g., Sjaastad, 1962; Autor, 2019; No-
towidigdo, 2020).
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Acemoglu et al., 2016; Pierce and Schott, 2016; Charles et al., 2019; Gagliardi et al., 2023), research

on energy transitions remains relatively limited, despite that the clean energy transition is poised

to reshape labor markets on a much larger scale. Recent studies document the economic and fiscal

consequences of coal’s decline — including reductions in earnings (Colmer et al., 2024; Rud et al.,

2024), lower tax revenues (Morris et al., 2019; Raimi et al., 2023), reduced household-level financial

health (Blonz et al., 2023), and increased reliance on government transfers (Autor et al., 2021; Han-

son, 2022) — but the broader regional adjustment process remains poorly understood.3 This paper

examines how a comprehensive set of regional economic outcomes responded to coal’s recent col-

lapse, extending early research on the 1980s coal bust (Black et al., 2002, 2005a,b) to consider how

the effects of industry contractions can accumulate over time. Because coal mining employment

is geographically concentrated in relatively remote regions with limited alternative opportunities,

the labor market adjustments in these areas may differ markedly from those observed in man-

ufacturing hubs. By estimating the regional adjustment costs of coal’s collapse and linking past

and present episodes of sectoral decline, this paper provides insights into the long-term vulner-

abilities of energy-dependent regions and previews the challenges that may emerge as fossil fuel

industries continue to contract.

The remainder of the paper is organized as follows. Section 2 clarifies major data sources

and provides a brief background on Appalachia’s coal industry. In section 3, I present a graphical

version of a model delivering predictions about how shocks influence the population composition

and economic trajectory of exposed places. Section 4.1 documents the county-level adjustment

costs associated with the 2007–2017 coal shock. In section 4.2, I examine the extent to which these

adjustment costs differ based on selective migration in historical periods. Section 5 concludes.

2 Data and economic setting

Data on employment, industry composition, population, and government transfer receipt are

compiled at the county level for 413 counties in Appalachia over the 2007–2017 period. The

definition of Appalachia used in this paper follows the regional boundaries defined by the Ap-

palachian Regional Commission (ARC). I supplement these contemporary data with a smaller set

of county-level characteristics going back to 1980. After clarifying major data sources, I describe

Appalachia’s coal industry and population composition in historical context.

3Other recent research on the economic consequences of coal’s collapse in Europe include Aragón et al. (2018); Brey
and Rueda (2024), and Haywood et al. (2024).
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2.1 Data on economic conditions and population characteristics

Publicly available employment data by industry or occupation often suppress employment values

for sparsely populated counties, and there are no publicly available datasets that have fully infor-

mative data on coal mining employment at the county level. To address this, I construct a dataset

of county-level economic and population statistics from a variety of sources, including the Mine

Safety and Health Administration (MSHA), County Business Patterns (CBP), the Census Bureau,

and the Bureau of Economic Analysis (BEA).

County-level coal mining employment statistics for the 2007–2017 period are constructed

from mine-level employment data from MSHA’s Mine Data Retrieval System. These mine-level

statistics are aggregated to the county based on the county in which the mine operates.4 County-

level coal mining employment for earlier periods is defined as the sum of all employment in SIC

code 12 or NAICS code 2121 based on data from the County Business Patterns (CBP) and imputed

by Eckert et al. (2020).5 Both the CBP- and MSHA-based definitions of coal mining employment

capture only workers directly employed in the coal mining industry.

Annual, county-level population counts by age group over the 1980 to 2017 period are based

on the intercensal estimates produced by the U.S. Census Bureau. Other county-level population

characteristics are retrieved from the American Community Survey (ACS) 5-year samples and

Decennial Censuses.6 Statistics derived from these sources include place of birth (foreign-born

share), the female share of the workforce, and the number and share of college-educated adults.7

Statistics on county-wide employment and income for years 1980 through 2017 are primarily

drawn from the Bureau of Economic Analysis (BEA) Regional Economic Accounts.8 Industry-

specific employment counts are retrieved from the Quarterly Census on Employment and Wages

(QCEW). The Census Bureau’s Business Dynamics Statistics program (BDS) is used to estimate

4Specifically, I combine the annual ”Employment Production Data set” with the ”Mines” dataset to link mine em-
ployment to the appropriate county. Total mine-level employment in the MSHA is defined as the mean quarterly
average employee count.

5The MSHA data begin in 2000. For the historical period, I use county-level industry-based employment data
imputed from CBP datasets by Eckert et al. (2020). County-level coal mining employment is frequently suppressed in
recent CBP datasets because of the change from SIC to NAICS industry classifications, and thus the imputed values are
less reliable for this recent period.

6Characteristics for years 2007 and 2017 are based on the ACS 2005–2009 and ACS 2015–2019 samples, respectively.
Characteristics for years 1980 and 1990 are based on the Decennial Census.

7I report summary statistics on median household income, racial composition (white share), and the homeownership
rate derived from the ACS, as well as poverty and Supplemental Nutrition Assistance Program (SNAP) receipt from
the Census SAIPE program. These characteristics are not considered in the central analysis.

8BEA data are not available for seven independent Virginia cities in the ARC region, which are omitted from the
analysis.
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the number of new business establishments in each county going back to 1980. I supplement the

data described above with a county-level dataset on employment for all U.S. counties at the 3-

digit NAICS code derived from the CBP. The CBP provides employment data in highly detailed

industry categories, though specific counts in less populous places are often suppressed. I thus

rely on the imputed values presented by Eckert et al. (2020).9

2.2 Economic setting: Appalachia’s coal country

While representing only a small fraction of the total United States workforce, coal mining has

long played an integral role in the economies of many Appalachian communities. Due to the

spatial concentration of coal deposits and the secular shifts in demand for the commodity, many

coal-dependent communities have been subject to recurrent demand shocks across generations

— sometimes referred to as the “boom and bust” cycle that commonly characterizes economies

dependent upon traditional industries (Black et al., 2005b,a; Marchand, 2012; Betz et al., 2015;

Allcott and Keniston, 2018; Aragón et al., 2018). Appalachia — which includes all of West Virginia

and parts of 12 other states — presents an informative empirical setting in which to examine local

demand shocks, selective migration, and regional decline due to its historical dependence on this

legacy industry and the persistent poverty afflicting many of its communities (Harrington, 1962;

Eller, 2008; Ziliak, 2012). In 1964, President Lyndon B. Johnson visited Martin County, Kentucky

— where coal accounted for over half of county earnings and the poverty rate exceeded 60 percent

— to promote his ”unconditional war on poverty.” The following year, the ARC was established

as a federal agency to help bring the region into socioeconomic parity with the rest of the United

States through grant programs that support infrastructure and workforce development projects,

among other activities.

Over the past several decades, coal mining employment declined by over two-thirds nation-

ally, with these declines driven by the same Appalachian communities where poverty, joblessness,

premature mortality, and other indications of economic and social distress have persisted since

ARC’s founding. Table 1 compares population and economic characteristics in 2007 across coun-

ties outside of Appalachia (column 1), inside of Appalachia (column 2), and coal counties within

9The CBP datasets provide detailed, county-level employment statistics for most counties, with specific data sup-
pression flags that indicate the employment size class of the workforce in a given industry when the exact number
is withheld to avoid disclosure. Since many counties are sparsely populated, many industry-employment counts are
suppressed in the CBP databases. The Eckert et al. (2020) dataset includes imputed values for these suppressed cells
for all industries using a straightforward imputation process, detailed in the paper.
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Table 1: Summary Statistics (2007)

(1) (2) (3)
Outside Appalachia Appalachia Appalachian coal counties

Baseline covariates
College share of adults 27.93 20.55 15.69

(9.88) (8.53) (6.71)

Female share of workforce 46.90 46.82 46.44
(2.20) (1.84) (1.79)

Foreign-born share of population 13.06 3.74 1.20
(10.85) (4.43) (0.92)

Additional statistics
Employment rate (per person ages 20–64) 79.48 70.35 63.36

(23.12) (20.08) (18.36)

Median household income ($1000s) 61.94 49.00 41.78
(15.50) (10.51) (7.43)

White share 64.24 85.02 92.41
(21.35) (12.96) (8.14)

Share of pop 60 years and older 17.20 20.07 21.15
(4.09) (3.82) (2.89)

Homeownership rate 66.27 72.78 73.77
(10.87) (5.21) (5.28)

Poverty rate 12.87 14.75 18.51
(5.17) (4.67) (6.37)

SNAP recipiency rate (per 100 people) 9.00 11.26 15.82
(5.24) (5.14) (7.89)

Gov. transfers ($1000s) per capita 6.62 7.66 9.10
(1.55) (1.71) (1.39)

Observations 2,668 413 65

Author’s calculations based on data from ACS, SAIPE, and BEA. All statistics are population-weighted. Shares and rates are mul-
tiplied by 100 unless otherwise noted. Statistics derived from the ACS are estimates from the 2005–2009 5-year ACS samples. All
other statistics are based on 2007 estimates. Appalachia includes 413 counties defined by the Appalachian Regional Commission with
non-missing BEA data. The coal counties in column 3 include with at least 0.537 percent of the adult population employed in coal
mining in 2007. The 0.537 percent cutoff reflects the median coal share among counties with any coal mining employment in 2007.

Appalachia (column 3).10 Appalachian counties host relatively older populations with low levels

of college attainment, and high shares of non-Hispanic whites and native-born residents. Before

coal’s recent decline, Appalachian counties had lower employment rates, lower incomes, higher

poverty rates, and higher rates of public assistance than the rest of the United States, with these

qualities intensified in Appalachia’s coal regions. The average poverty rate in Appalachian coal

counties was 43 percent higher than outside of Appalachia, and the SNAP recipiency rate was 75

percent higher. Across a range of characteristics, Appalachia’s coal regions fare poorly compared

10For exposition purposes, I define a county as a coal county in Table 1 if its coal mining employment share of the
adult population in 2007 was at least 0.537 percent. This cutoff reflects the median coal share among counties with any
coal employment in 2007.
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to others.

Coal mining has traditionally offered relatively high wages to workers with relatively low

levels of educational attainment, providing a critical source of labor income in these distressed

communities. Figure 1 compares median (2017 inflation-adjusted dollars) earnings among full-

time, male workers ages 20–64 in Appalachia to those working in the coal mining industry, while

Figure 2 shows the relative educational composition of these groups of workers, based on data

from the 1980 Census and the 2005–2009 ACS. At all levels of educational attainment, coal mining

delivers relatively higher wages. In the 2005–2009 ACS sample, the median wage for full-time,

male coal miners was about 37 percent more than that for all full-time, male workers in Ap-

palachia. That the coal industry offers such a large wage premium suggests that job loss in the

industry might be particularly consequential for communities built around the resource, which

lack robust industrial sectors to absorb displaced workers.

Figure 1: Median annual wages of male workers in Appalachia by educational attainment

Notes: Author’s calculations based on the 1980 Census and 2005–2009 ACS, retrieved from IPUMS. The sample is
restricted to male workers ages 20–64 in Appalachian counties reporting working at least 40 weeks at an average of 35
hours per week, and reporting earning at least the minimum hourly wage ($3.10 in 1980 and $5.85 in 2007), adjusted
to a 40 week, 35-hour-week schedule. Earnings are adjusted to 2017 dollars using the CPI-U. Coal miners refers to all
workers reporting working in the coal mining industry.

The economic divides documented in Table 1 intensified in the decade that followed along-

side large-scale declines in demand for coal. Appalachia lost over 23,000 coal mining jobs between

2007 and 2017, reflecting a 43 percent loss in industry employment. At the same time, the popula-

tion of Appalachia’s most coal-dependent counties declined rapidly. The top half of Appalachia’s

coal-dependent counties (in terms of the coal share in 2007) lost nearly 75,000 residents over the
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Figure 2: Educational attainment of male workers in Appalachia

Panel A: 1980 Panel B: 2005–2009

Notes: Author’s calculations based on the 1980 Census and 2005–2009 ACS, retrieved from IPUMS. The sample is
restricted to male workers ages 20–64 in Appalachian counties reporting working at least 40 weeks at an average of 35
hours per week, and reporting earning at least the minimum hourly wage ($3.10 in 1980, and $5.85 in 2007), adjusted
to a 40 week, 35-hour-week schedule. Coal miners refers to all workers reporting working in the coal mining industry.

decade, reflecting a 2.7 percent decline. This recent decline succeeded a period of relative stabil-

ity following a large-scale coal “bust” during the 1980s. Figure 3 depicts the change in annual

population and coal mining employment in Appalachia over the 1980–2017 period, with values

indexed to 2007 levels, demonstrating the extremely tight relationship between coal mining em-

ployment and population in coal-dependent communities that has persisted in this region for

several decades. Over the 37-year period, coal mining employment fell by about 140,000 jobs

(an 82 percent decline), while the total population in the top half of coal-dependent Appalachian

counties fell by nearly 300,000 over the same period (a 10 percent decline).11

Notably, this population loss was highly selective, characterized by larger declines in young

and better-educated residents. The selectivity of population change in Appalachia’s coal commu-

nities was more pronounced than in other Appalachian regions, although there was substantial

heterogeneity across coal regions. Appendix Figure A1 shows the distribution across counties of

population changes between 1980 and 2007 expressed in deviation from the U.S. mean, separately

for the top 50% of Appalachian coal-dependent counties (in teal) and all Appalachian counties (in

gray). Counties to the left of zero experienced relative declines in the population category between

11While the decline in coal mining employment in the 1980s resulted from falling coal prices, improvements in coal
mining technology, and the introduction of more accessible Western coal reserves, the more recent decline in Ap-
palachian coal mining employment is largely attributable to technological advances in hydraulic fracturing that has
made cheap natural gas more widely available (Kolstad, 2017; Linn and McCormack, 2019; Coglianese et al., 2020).
Coglianese et al. (2020) estimate that 92 percent of the total decline in coal production between 2008 and 2016 could be
attributed to the decline in natural gas prices relative to coal.
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Figure 3: Population and coal mining employment, Appalachian counties

Notes: Coal mining employment in years 2000-onward is calculated based on mine-level statistics from the Mine Safety
and Health Administration (MSHA). Coal mining employment in years prior to 2000 is calculated based on County
Business Patterns (CBP) data imputed by Eckert et al. (2020). The red line captures the change in coal mining employ-
ment in all Appalachian counties between 2007 (employment sim54 thousand) and the year indicated. The dashed
black line represents the change in the aggregate annual population in 65 Appalachian coal counties between 2007
(population ∼ 2.7 million) and the year indicated. These 65 counties are those in which at least 0.537 percent of the
adult population was employed in coal mining in 2007. The 0.537 percent cutoff reflects the median coal share among
counties with any coal mining employment in 2007.

1980 and 2007 compared to the U.S. average. Appalachia’s most coal-dependent counties experi-

enced larger relative losses in their adult populations (ages 20–64) during this period leading up

to the 2007–2017 coal shock, and these losses were more selective than in Appalachia as a whole.

Appalachian coal counties are heavily concentrated in the leftmost bins of the figure, such that

these counties were becoming older and less educated compared to the rest of Appalachia and

America. However, there exists dispersion in the degree of selective migration, even within Ap-

palachian coal regions. Investigating the extent to which the consequences of the contemporary

coal shock are influenced by historical changes in human capital endowments is a central goal of

the analysis that follows.

3 A model of coal shocks

Recent shifts in coal demand have impacted all of Appalachia’s coal communities, but places

may vary in their capacity to adjust due to historical episodes that shaped their initial conditions.

This section introduces a high-level, graphical version of a spatial equilibrium model that illus-

trates how adverse shocks in one generation can reverberate into the next. The model is detailed
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in Appendix Section B. It follows the work of Rosen (1974, 1986); Roback (1982); Blanchard and

Katz (1992), and basic labor demand and supply models that incorporate heterogeneous types of

workers (Diamond, 2016; Notowidigdo, 2020). Here, I outline the model’s basic setup, broader

intuition, and major predictions.

3.1 Setup

There are two “types” of workers in the economy: high (H) and low (L). High-type workers

are relatively more productive than low-type workers, and thus they receive low-type workers’

wages scaled by the efficiency parameter ω, where ω > 1. Workers choose to live in either a coal

community or elsewhere, and there are a total of NH high-type and NL low-type workers living

in the coal community. Each worker consumes one unit of a fixed housing stock within a place,

such that the number of housing units in the coal community is equal to the number of workers

(NH + NL). Because there is one market for housing, high and low types pay the same price in

equilibrium. High- and low-type workers’ willingness to pay (WTP) for housing is dictated by the

wages they receive in the coal community as well as their local amenity preferences.

Each place has many firms in one of two industries: coal (C) and non-coal (NC). Both coal

and non-coal firms hire from the same pool of local high- and low-type workers, and thus firms

in both industries pay the same wage (W ∗) for an effective unit of labor in equilibrium, where

an effective unit of labor is one unit of labor from a high-type worker or one unit of labor from

a low-type worker scaled by the efficiency parameter, ω. An important feature of the model is

that the number of local non-coal firms is increasing in the number of high-type workers in the

preceding period. This connection reflects the well-documented relationship between human cap-

ital, entrepreneurship, and firm creation found in the literature (e.g., Lucas, 1988; Acemoglu and

Angrist, 2000; Moretti, 2004; Gennaioli et al., 2013; Chatterji et al., 2014). Here, high-type workers

function as entrepreneurs that give birth to new, non-coal firms in subsequent periods.

3.2 First-period shock and selective migration

Panel A of Figure 4 displays the initial conditions in the coal community. The number of high-type

workers increases rightward from the lower left corner, while the number of low-type workers

increases leftward from the lower right corner. The bottom axis is fixed. It reflects the total pop-

ulation in the coal community (NH + NL), which is equal to the number of housing units. The

price of housing is determined by the intersection of high- and low-type WTP, where both WTP
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lines are downward-sloping from their respective axes.

Figure 4: A first-period shock and selective migration

Panel A: Initial conditions in coal community Panel B: Effects of adverse productivity shock

Notes: Panel A describes the initial conditions in the coal community. The number of high types is increasing from left
to right and the number of low types is increasing from right to left, with the total population fixed by the X-axis. The
Y-axis describes the price of housing. WTPH (WTPL) describes the WTP for housing among high (low) types. Panel B
describes the impacts of an adverse productivity shock in the coal community. This shock produces a downward shift
in WTPH that is equal to the downward shift in WTPL, scaled by the high-type efficiency parameter, ω.

Panel B of Figure 4 illustrates the consequences of an adverse productivity shock in the coal

community, which reduces the wages of both high- and low-type workers. This wage reduction

shifts the WTP for housing inward for both types. Because high types are relatively more efficient

than low types, their WTP declines by a greater amount, with the reduction in low-type WTP, X ,

scaled by the efficiency parameter ω. This produces selective migration, reducing the equilibrium

number of high-types living in the coal community. Consequently, the migration response influ-

ences the resulting population composition (NH/NL) to include relatively fewer high types, as

depicted by the leftward shift in the dotted line intersecting the bottom axis.12

3.3 Second-period shock

That an adverse shock can produce selective migration is a relatively standard prediction in many

spatial equilibrium models, and is borne out in many empirical settings (e.g., Topel, 1986; Bound

and Holzer, 2000; Moretti, 2011; Notowidigdo, 2020). How does this influence the consequences

of future shocks? Here, I describe the model predictions regarding how a first-period shock in-

fluences firm composition, as well as how this shift in firm composition affects the wage conse-

12Because migration decisions respond to wages and amenities influenced by the shock, the resulting population
composition (NH/NL) is an endogenous parameter.
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quences of a subsequent, second-period shock.

Figure 5 displays the labor demand conditions in a coal community. The number of effective

units of coal (non-coal) labor in the community is LC (LNC). On the bottom axis, LC increases

rightward from the lower left corner, and LNC increases leftward from the lower right corner.

Equilibrium wages W ∗ are determined by the intersection of the downward-sloping labor de-

mand curves for coal and non-coal labor. Because firm entry in the non-coal sector is increasing in

the lagged supply of high-type workers, a first-period shock that induces selective out-migration

reduces the number of non-coal firms in the following period. This, in turn, lowers both the level

and elasticity of non-coal labor demand – effectively pivoting the demand curve downward, as

shown by the shift from the thinner to the thicker purple line in Figure 5.13

Suppose that the coal industry experiences an adverse shock in a subsequent period. Figure

5 displays this as an inward, level shift in the labor demand curve for coal, from the thinner to the

thicker green line. This inward shift reduces equilibrium wages W ∗ and reduces the coal share

of total labor. The figure illustrates how selective migration induced by a first-period shock alters

the wage adjustment to a second-period coal shock. In a community with a higher initial skill

share and a flatter non-coal labor demand curve (i.e., in the absence of the first-period shock),

equilibrium wages would adjust from point A to point D. In contrast, the steeper the non-coal

labor demand curve produced by a lower skill share amplifies the wage adjustment to the second-

period coal shock, as shown by the larger change from point B to point C.

The spatial equilibrium model, graphically depicted here and detailed in Appendix Section

B, produces two major results that are relevant to understanding selective migration, regional de-

cline, and the consequences of recurrent shocks. First, adverse shocks produce selective migration,

which affects the relative population sizes of high- and low-skilled labor. Allowing educational

attainment to serve as a crude proxy for different types, adverse shocks will yield local population

loss, with larger losses among better-educated (i.e., high-type) workers. Second, the consequences

of adverse shocks will be more severe in places exposed to shocks in preceding periods, thanks to

the selective migration induced by preceding shocks and the effect that selective migration has on

subsequent economic activity. This implies that shocks can have long-term consequences on the

evolution of places via their effect on the flow of human capital.14 In the context of Appalachia’s

13With fewer non-coal firms, labor demand declines and becomes less responsive to wages, resulting in a downward
pivot (i.e., steeper slope) of the demand curve.

14This is consistent with other work indicating that the stock of human capital is important to regional economic
growth (Glaeser et al., 1995; Glaeser, 2005; Gennaioli et al., 2014; Islam et al., 2015; Gagliardi et al., 2023).
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Figure 5: Selective migration, labor demand, and a second-period shock

Notes: Figure describes the labor demand conditions in the coal community. The number of coal labor units is increas-
ing from left to right and the number of non-coal labor units is increasing from right to left. The Y-axis describes wages
for an effective unit of labor. D(non-coal) and D(coal) reflect demand curves for non-coal and coal labor. Thinner lines
depict labor demand in the absence of a first-period shock. The pivot from the thinner to the thicker purple line reflects
reduced firm entry in the non-coal sector, which is increasing in the lagged supply of high-type labor. The shift from
the thinner to the thicker green line reflects a second-period adverse coal shock, which directly lowers demand for coal
labor. Point A identifies initial equilibrium wages, W ∗. Point B identifies W ∗ following a pivot in demand for non-coal
labor caused by a first-period shock which reduced the number of high types. Point C identifies W ∗ following the new
coal shock, and point D identifies W ∗ following the new coal shock in the absence of the initial shock and hence in the
absence of pivoting demand for non-coal labor.

coal country, certain communities may be more vulnerable to the consequences of the contempo-

rary decline in demand for coal because they were exposed to shocks in preceding periods which

reduced the stock of human capital.

4 Regional adjustment to coal shocks

In this section, I first consider the adjustment costs associated with a single-period coal shock.

This analysis leverages differential county-level exposure to the 2007–2017 coal shock to esti-

mate the effect of declining demand for coal on county-level employment, population counts,

and the employment-population ratio. Next, I exploit variation in spatial proximity to histori-

cal employment shifts to understand how selective migration in preceding periods influences the

consequences of the contemporary coal shock.
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4.1 Adjustment to a single-period shock

4.1.1 Empirical approach

To understand the county-level adjustment to a single-period coal shock in terms of its effect on

employment, population mobility, and other outcomes, I estimate the following long-difference

equation (Griliches and Hausman, 1986):

∆y2007-17j = β0 + β1∆Coal2007-17j + β2
(
1[Coal2007j > 0]

)
+ X′

jγ + δs + εj (1)

where ∆y2007-17j is county j’s long-difference change in outcome y between 2007 and 2017. The

main independent variable of interest, ∆Coal2007-17j , is -1 times the change in the coal mining

employment share of the population ages 20–64 over the same period. I refer to the change in the

coal share as the coal shock throughout.15 The observed change in the coal share is multiplied by -1

for ease of interpretation, such that a larger decline in the coal share implies a larger coal shock. In

equation 1, I include a dummy variable indicating whether the county had any coal employment

at the beginning of the period (1[Coal2007j > 0]) and state fixed effects, δs.16 A vector of county-level

controls X′
j includes the initial share of the adult population with a college degree, the share of the

population that is foreign-born, and the female share of the adult workforce (ages 20–64). Coal

is concentrated in regions with different population characteristics which may be predictive of

outcome trajectories. These controls capture other potential determinants of outcomes that might

be correlated with the initial coal share. Omitting covariates in the estimation of equation 1 does

not alter the conclusions, and controlling for a richer set of county-level characteristics (e.g., the

manufacturing share of employment and the population age distribution) also produces similar

results. The coefficient β1 measures the responsiveness of the outcome of interest to changes in the

local coal mining employment share of the adult population over the decade, such that a positive

(negative) β1 implies that the outcome increases (decreases) with a larger shock.

I consider a range of outcomes ∆y2007-17j that capture various county-level margins of adjust-

ment to the coal shock. I focus on the change in the natural log of employment, the change in the

natural log of working-age adults (ages 20–64), and the change in the employment-population ra-

15The conclusions are quantitatively similar when defining the shock as the change in the coal share of employment,
as well as the change in the coal share of the consistent (2007) population.

16One concern is that coal is highly spatially concentrated, and heavily so in Eastern Kentucky and West Virginia, such
that large declines in coal mining employment would coincide with state-level regulations or policies that would also
influence outcomes. The inclusion of state fixed effects absorbs these idiosyncratic state-level policies. The conclusions
are robust to omitting state fixed effects and alternative levels of geographic controls (e.g., division).
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tio, defined as the number of employees per working-age adult.17 Employment counts are based

on total wage and salary employment from the BEA and the number of working-age adults is

derived from Census estimates.18 In the appendix, I consider several other outcomes, including

changes in earnings and changes in population counts by sex and education.

I estimate equation 1 for the 413 counties served by the ARC with non-missing data in all

years of analysis.19 Of these 413 counties, 129 (31 percent) had any coal mining employment in

2007. Appendix Table A1 reports summary statistics for the primary independent variables in this

analysis. The population-weighted mean coal shock (x100) was 0.38 (implying a decline in the coal

share of 0.38pp) and the standard deviation was a change of 1.6pp. The distribution of the coal

shock has a long right tail: counties at the 95th and 99th percentiles experienced declines of 1.6pp

and 6.9pp, respectively. All regressions are weighted by the initial county population to minimize

measurement error driven by sparsely populated areas. In practice, weighting has little effect on

the estimates.20

Estimating equation 1 using ordinary least squares (OLS) could yield biased estimates of

the causal effect of the coal shock for several reasons. Unobservable, idiosyncratic factors may

simultaneously reduce (or increase) county-level economic indicators and draw individuals out

of the coal sector, producing a spurious association between the change in the coal share and the

economic indicator. An environmental disaster, such as the historic 2022 flood in Eastern Ken-

tucky, might reduce coal mining activity and prevent employment in other sectors, producing a

downward bias in the OLS coefficient. Counties actively diversifying their workforce by provid-

ing educational investments and tax credits for new businesses might draw workers away from

coal mining and into other, more productive industries, producing an upward bias in the OLS

coefficient. To address this, I exploit the fact that changes in coal demand are macroeconomic in

17The primary independent variable is defined such that a 1-unit change in the coal shock reflects a 0.01pp change in
the coal share. Thus, the coefficient estimate for all outcome variables that are expressed as the change in the natural
log can be interpreted as the effect of a 1pp change in the coal share, without multiplying by 100, as is typical for log-
transformed outcome variables. Outcome variables that are expressed as changes in shares are also defined such that 1
unit reflects a 0.01pp change. Thus, the coefficient estimates for these outcomes can also be interpreted directly as the
effect of a 1pp change in the coal share.

18Wage and salary employment excludes sole proprietorships, partnerships, and tax-exempt cooperatives. The con-
clusions are broadly similar when including these forms of employment.

19The ARC-defined region serves as a natural geographic setting to examine the coal shock, as it has been subject to
common policy interventions since the ARC’s foundation. However, it does include several relatively urban, non-coal
areas that may serve as poor counterfactuals for the less dense and distressed coal communities in Central Appalachia.
The results are insensitive to omitting these areas.

20All specifications report robust (heteroskedasticity-consistent) standard errors, following the approach used in re-
lated work with similar instruments (Charles et al., 2019) Clustering by state is unreliable with only 13 clusters. While
recent work recommends exposure-robust standard errors in shift-share designs (e.g., Borusyak et al., 2025), clustering
at the commuting zone level yields similar inference.
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nature, and yet certain counties are differentially exposed to these fluctuations thanks to existing

coal infrastructure (i.e., comparative advantage due to the spatial concentration of coal reserves).

Specifically, I instrument for the local coal shock ∆Coal2007-17j with the initial (2007) coal mining

share of the adult population (ages 20–64), Coal2007j . The interaction between regional variation in

comparative advantage, or ”exposure,” and the national sectoral shock serves as the identification

strategy.21 The left panel of Figure 6 displays a heat map of Coal2007j across Appalachian counties,

while the right panel displays a heat map of the local coal shock, ∆Coal2007-17j . As seen in the

figure, coal employment was heavily concentrated in Eastern Kentucky and West Virginia, which

subsequently experienced the largest declines in coal employment over the 2007–2017 period.22

Figure 6: Coal share in 2007 (Coal2007j ) and subsequent coal shock (∆Coal2007-17j )

Coal share
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Notes: The coal share Coal2007j is defined as the coal employment share of the working-age adult population in 2007.
The coal shock ∆Coal2007-17

j is the change in the coal share between 2007 and 2017, multiplied by -1. Coal employment
is calculated based on mine-level statistics from the Mine Safety and Health Administration. Adult population is
defined as the population ages 20–64 and is based on Census estimates. Shaded area includes 413 Appalachian counties,
where grey indicates that the county hosted no coal mining employment in 2017.

This IV approach is akin to a Bartik industry shift-share instrument, where the initial coal

share of the adult population serves as the “share,” or county-level exposure to the labor demand

shock (Bartik, 1991). The “shift” is the national change in demand for coal, largely influenced by

the emergence of cheap natural gas made available by hydraulic fracturing technology (Linn and

McCormack, 2019; Coglianese et al., 2020; Davis et al., 2022).23 Because this shift is macroeconomic

21Because there is only one industry, the instrument used here is effectively identical to a leave-one-out shift-share
instrument that multiplies the initial share by the common shock, as in Autor et al. (2021)

22The first-stage F-statistic on the 2007 coal share is 22.
23Environmental regulations increasing the cost of producing coal-fired energy and weak international demand both

amplified waning demand for coal.
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in nature and thus common to all counties, the initial shares drive the variation necessary for

identification (Goldsmith-Pinkham et al., 2020). The exclusion restriction requires that having a

highly coal-dependent workforce at the beginning of the period does not affect a county’s expected

outcomes except through its relationship with declining coal mining shares in the subsequent

decade, conditional on observables. This is impossible to test for explicitly, but one indirect test of

the exclusion restriction is to examine whether the instrument predicts outcome changes during

a period of relative stability in demand for coal. Appendix section D details this falsification

test, offering evidence that the 2007 coal share is quite predictive of outcome changes during the

period of coal’s sectoral decline (2007–2017), but not during the placebo period in which demand

for coal is relatively stable (1997–2007).24 The results presented in this paper are additionally

robust to controlling for lagged population changes, lagged coal shares, spatial spillovers, and

instrumenting for the local coal shock with a county-level measure of initial coal endowment,

predating any experience with coal mining.

4.1.2 Employment and population adjustment to a single-period shock

Table 2 presents the baseline coefficient estimates of β1 from equation 1 reflecting the relationship

between the 2007–2017 coal shock and the change in total employment (Panel A), the change in

the working-age adult population (Panel B), and the employment-adult population ratio (Panel C).

The point estimates in column 1 are produced using OLS, while the estimates in columns 2 through

5 instrument for the coal shock with the initial (2007) coal share. I initially present a parsimonious

specification with no controls. The employment and population estimates in column 2 are larger

in magnitude than the OLS estimate in column 1, which is consistent with several hypotheses

about the nature of idiosyncratic declines in coal employment at the local level. For example, if

declines in coal employment result from economic diversification efforts and the growth of other

industries, this would produce a positive correlation between coal shocks and local labor demand

that would bias OLS estimates toward zero.

The estimates in column 3 incorporate state fixed effects and those in column 4 control for

baseline county-level covariates including the initial share of the population that is foreign-born,

the female share of employment, the share of adults with a college degree, and a dummy variable

24Further, the interaction of the initial coal share with the price of relevant competing commodities (oil and gas)
predicts outcomes over the periods in which coal is in decline, while this interaction does a poor job of predicting
outcomes during the relatively stable periods of coal demand. These tests indicate that the coal share influences out-
comes through its interaction with macroeconomic factors, but does not predict outcomes during periods of stability,
conditional on observables.
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indicating whether the county had positive coal employment at the beginning of the period. The

specification in column 5 additionally controls for the county’s initial manufacturing share of em-

ployment, the share of natural gas produced by the county in 2007, and the 2007-level share of the

population ages 0-19, 20-39, and 40-59.25 These additional controls do not substantively change

the point estimates.26 I refer to the specification in column 4 as the baseline.

Table 2: Employment and population adjustment to single-period coal shock, 2007–2017

(1) (2) (3) (4) (5)
OLS IV

Panel A: ∆ln(wage and salary employment) 2007-2017
Coal shock, 2007–2017 -3.30*** -4.60*** -3.77*** -3.24*** -3.45***

(0.45) (1.13) (0.88) (0.74) (0.80)

Panel B: ∆ln(population ages 20–64) 2007-2017
Coal shock, 2007–2017 -1.48*** -3.29** -2.14** -1.42** -1.44**

(0.37) (1.28) (0.88) (0.63) (0.61)

Panel C: ∆ employment:population ratio, 2007-2017
Coal shock, 2007–2017 -0.82*** -0.50* -0.78*** -0.97*** -1.07***

(0.14) (0.28) (0.23) (0.23) (0.23)
State FE ✓ ✓ ✓
Baseline controls ✓ ✓
Additional controls ✓
First-stage F-stat 26.52 24.29 22.48 24.55
Observations 413 413 413 413 413

All regressions are weighted by initial (2007) county population. Robust standard errors are in parentheses. Baseline
controls include the initial share of the population that is foreign-born, the female share of employment, the share of
adults with a college degree, and a dummy variable indicating whether the county had positive coal employment at
the beginning of the period. Additional controls include the manufacturing share of employment, the share of natural
gas produced by the county, and the share of the population ages 0-19, 20-39, and 40-59. The coal shock is defined as -1
times the change in the coal employment share of the adult population (ages 20–64). I instrument for the coal shock in
columns 2-5 with the coal share in 2007. The first-stage F-stat on the instrument is reported in the second row from the
bottom. Outcome variables are retrieved from the BEA Regional Economic Accounts.
*** p<0.01, ** p<0.05, * p<0.1

The point estimates in column 4 indicate that a 1-unit change in the coal shock (a 1pp decline

in the coal share of the population ages 20–64) yields a 3.2 percent decline in employment, a

1.4 percent decline in the population ages 20–64, and nearly a 1pp decline in the employment-

population ratio (i.e., the employment rate). The decline in employment exceeds what would

25The manufacturing share is based on the imputed CBP data from Eckert et al. (2020). Natural gas production is
retrieved from the USDA Economic Research Service (ERS) ”County-level onshore oil and natural gas production in
the lower 48 States, 2000-11”. Population age shares are based on Census estimates.

26The conclusions drawn from Table 2 are robust to additionally controlling for commuting flows between adjacent
coal counties, indicating that these adjustment costs persist after accounting for potential spillovers from proximate
coal activity.
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be expected from population loss alone.27 Moreover, the magnitude of the employment decline

exceeds what might be explained by direct job losses in the coal sector alone, particularly given its

modest size in most counties.28

To interpret the magnitude of these changes, consider the effect of a 1-standard deviation

(SD) increase in the coal shock (1.6pp). This implies a reduction in employment of over 5 percent,

a 2.4 percent reduction in the size of the working-age adult population, and a 1.5pp reduction in

the employment rate.29 That employment counts and employment rates decline with local de-

mand shocks is consistent with a broader body of work documenting the regional adjustment

costs associated with shocks in other industries, like manufacturing. At the same time, popula-

tion mobility appears to be a particularly important margin of adjustment in Appalachian coal

regions compared to these other settings, where researchers often document null or very modest

population responses in contemporary settings (Autor et al., 2013; Charles et al., 2019; Faber et

al., 2022). This scholarship tends to conclude that population mobility is an increasingly sluggish

adjustment mechanism (Molloy et al., 2011; Partridge et al., 2012; Dao et al., 2017; Jia et al., 2023;

Olney and Thompson, 2024). Appendix Table A2 reveals that the adjustment to coal shocks in Ap-

palachia has remained quite consistent over time, with the 1980–1990 coal shock producing similar

employment and population effects as the 2007–2017 shock.30 Although population mobility can

help attenuate the overall wage and employment rate impacts of local demand shocks (Blanchard

and Katz, 1992), it can also reduce human capital endowments, tax revenues, and influence other

local characteristics which may amplify the risks associated with subsequent shocks.

4.1.3 Selective migration and other adjustments

In line with other work documenting the selective nature of migration responses (Bound and

Holzer, 2000; Glaeser and Gyourko, 2005; Wozniak, 2010; Amior and Manning, 2018; Notowidigdo,

2020), the population response to coal shocks is larger among college-educated adults. Table 3

27To attribute the entire 3.2% employment decline to the 1.4% decline in population, one would need to assume that
every single individual reflected in the population decline was employed and that the employment rate was only 40
percent.

28This may indicate negative spillover effects in other industries, consistent with Black et al. (2005a). I explore this
possibility in Appendix Section E.

29The population-weighted mean employment rate in 2007 across all 413 Appalachian counties was 70 percent (Table
1), so this reflects a very modest decline in the employment rate.

30The regression specification used to produce the estimates in Appendix Table A2 is analogous to that used to
produce Table 2, but with 1980-level covariates, 1980 population weights, and the 1980 coal share as an instrument for
the 1980–1990 coal shock. The average coal county had a much higher coal share in 1980 than in 2007, and thus a 1-unit
coal shock reflects a smaller percent change in the historical period than the contemporary period. Thus, the smaller
coefficients in the historical period do not necessarily imply a smaller adjustment.
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displays the IV estimates for the effect of the 2007–2017 coal shock (panel A) and 1980–1990 coal

shock (panel B) on adult (ages 25 and older) population counts by educational attainment. Panel

A distinguishes male versus female population responses, revealing that population declines in

response to the 2007–2017 coal shock are largest among men with at least a college degree (column

4), while the response among men and women with less than a high school degree is statistically

indistinguishable from zero (column 2). Over the decade, a 1-unit (1pp) increase in the coal shock

yields a 3.1 percent decline in the college-educated male population and a slightly less precise

0.29pp decline in the share of adult men with a college degree.

To account for lagged mobility responses, Panel B of Table 3 displays the effect of the his-

torical (1980–1990) coal shock on population mobility across progressively longer time horizons.

The first row reveals that the 1980–1990 coal shock reduces the head counts of better-educated

adults, but not by a large enough magnitude to change the skill composition of the adult popula-

tion. Subsequent rows reveal that the selectivity of population mobility grows over progressively

longer time horizons. A 1-unit (1pp) increase in the 1980–1990 coal shock reduces the college share

of the adult population by about 0.22pp over the 1980–2007 period, and it reduces the aggregate

college-educated headcount by about 3.2 percent by 2007. Thus, by the time the contemporary

coal shock unfolds, Appalachia’s coal communities were much smaller and less educated than in

the absence of the 1980s coal bust.

Other work has documented a wide range of consequences of local demand shocks, includ-

ing reduced earnings and income (Davis and von Wachter, 2011; Colmer et al., 2024; Rud et al.,

2024), increased reliance on disability insurance and other transfer payments (Black et al., 2002,

2003; Jacobsen and Parker, 2016; Charles et al., 2019; Hanson, 2022), and impacts on the hous-

ing market (Zabel, 2012; Notowidigdo, 2020). Appendix Section E explores several of these other

forms of labor market adjustments. In addition to reducing employment and population counts,

the 2007–2017 coal shock reduced total and average earnings. With aggregated, county-level data,

it is impossible to distinguish the extent to which changes in average earnings are driven by simul-

taneous changes in the population composition. Larger local employment losses among the most

productive workers will mechanically reduce average earnings. While compositional shifts in the

population are a contributing factor, earnings losses are concentrated among relatively immobile

groups of workers (less-educated men). This is consistent with other work using individual-level

data to document relatively large earnings impacts from various shocks (Topel, 1990; Jacobson et

al., 1993; Walker, 2013; Rud et al., 2024), and provides suggestive evidence that average earnings
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Table 3: Adult (ages 25 and older) population change by sex and educational attainment,
2007–2017 and 1980–1990 coal shock

(1) (2) (3) (4)
∆ College share

of adults
∆ ln(adults w/
less than high

school)

∆ ln(adults w/
HS or some

college)

∆ ln(adults w/
college degree or

more)

Panel A: 2007–2017 coal shock
∆ Male adult population

Coal shock, 2007–2017 -0.29* 0.64 -0.64* -3.11**
(0.15) (0.77) (0.37) (1.40)

∆ Female adult population
Coal shock, 2007–2017 -0.04 0.57 -1.31** -1.59

(0.11) (0.95) (0.59) (1.04)

Panel B: 1980–1990 coal shock
∆ Adult population, 1980–1990

Coal shock, 1980–1990 -0.03 -0.12 -0.61** -0.74*
(0.04) (0.21) (0.25) (0.45)

∆ Adult population, 1980–2000
Coal shock, 1980–1990 -0.14** -0.21 -1.29*** -2.23***

(0.06) (0.40) (0.48) (0.62)
∆ Adult population, 1980–2007

Coal shock, 1980–1990 -0.22*** -0.79 -1.46** -3.23***
(0.08) (0.57) (0.59) (0.81)

State FE ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓ ✓
Observations 413 413 413 413

All regressions are weighted by initial (2007 or 1980) county population and include state fixed effects and controls
for the initial (2007 or 1980) share of the population that is foreign-born, the female share of employment, the share of
adults with a college degree, and a dummy variable indicating whether the county had positive coal employment at
the beginning of the period. Robust standard errors are in parentheses. The coal shock is defined as -1 times the change
in the coal employment share of the adult population (ages 20–64) over the 2007–2017 (Panel A) or 1980–1990 (Panel B)
period. I instrument for the coal shock with the coal share in 2007 (Panel A) or 1980 (Panel B). Outcome variables in
Panel A describe the 2007–2017 change in the population ages 25 and older by sex and educational attainment, based on
ACS 5-year estimates (2005–2009 and 2015–2019). Outcome variables in Panel B describe the change in the population
ages 25 and older by educational attainment, based on decennial Census estimates (1980, 1990, and 2000) and the ACS
5-year estimates (2005–2009). Each row in Panel B defines the outcome over a different time horizon: 1980–1990, 1980–
2000, and 1980–2007.
*** p<0.01, ** p<0.05, * p<0.1

declines are not solely driven by mechanical compositional changes in the workforce. Appendix

Section E additionally demonstrates that employment losses extend beyond the mining industry.

The 2007–2017 coal shock reduced employment in certain service sectors relatively more reliant

on local demand, suggesting the adverse coal shocks might trigger de-agglomeration forces in

exposed communities.

The result that the 2007–2017 coal shock reduces local employment and population counts is

22



robust to alternative identification strategies and definitions of the coal shock. Appendix sections

F and G detail these alternative specifications. In Appendix section F, I instrument for the 2007–

2017 coal shock with a measure of county-level coal endowments that predates any economic

experience with the industry. This exercise produces largely similar point estimates as the baseline

specification, supporting the notion that the baseline estimates are driven by differential exposure

to coal’s sectoral collapse. In Appendix Section G, I examine the role of spatial spillovers across

counties, accounting for potential indirect effects of the coal shock on neighboring labor markets.

4.2 Selective migration and a second-period shock

4.2.1 Identification strategy

The model presented in this paper implies that an adverse shock may be more consequential in

places that experienced selective migration, or greater brain drain, resulting from shocks in pre-

ceding periods. In this section, I explore whether the adjustment costs associated with the contem-

porary coal shock differ based on a place’s history of selective migration. Because the underlying

population composition is endogenous to local economic conditions, I leverage differential expo-

sure to plausibly orthogonal labor demand shocks occurring during the 1980s to isolate the exoge-

nous component of selective migration. These shocks created uneven push and pull dynamics for

high-skilled workers in coal communities. I detail this identification strategy below.

The spatial concentration of coal deposits introduces an additional challenge: serial correla-

tion in exposure to coal shocks across time makes this setting less suitable for the standard local

projections-style approach commonly used to estimate impulse response functions (Jordà, 2005,

2023).31 Instead, I identify selective migration from preceding shocks by leveraging the fact that

the 1980s coal bust occurred amidst the backdrop of orthogonal expansions and contractions in

other industries which differentially affected places based on the regional concentration of indus-

try employment. This approach is motivated by the insight that local employment and wages are

influenced both by local industry productivity and — in the case of spatial spillovers — industry

productivity in proximate labor markets. The bilateral nature of migration decisions implies that

the population adjustment to shocks depends both on the direct impact of the local demand shock

31A local projections-style approach in this setting would require that shocks are independent across time, but coal
shocks are serially correlated. The same geographic concentration of coal activity that made certain counties highly
exposed to the 1980s coal bust also made them disproportionately exposed to the 2007–2017 coal shock. Because earlier
shocks fundamentally altered baseline conditions – through mechanisms like selective migration – that shape the ob-
served impacts of later shocks, I cannot credibly identify heterogeneity in selective migration between the two periods
based on the historical coal shock alone.
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as well the indirect impact of demand shocks in proximate locations, with the relative strength

of the relationship between two locations dictated by the gravity structure of trade (Adão et al.,

2019; Redding, 2022; Borusyak et al., 2022b; Olney and Thompson, 2024). In this setting, selective

migration can emerge thanks to the “push” of the historical coal shock, which is common across

coal counties, as well as the “pull” of historical labor demand shocks in proximate markets, which

vary in intensity across coal communities.

To operationalize this approach, I define selective migration as the change in the natural log

of the college-educated adult population, and I predict selective migration driven by exogenous

shocks over the 1980–1990 period ( ̂∆collegej
1980-90

) by estimating the following:

∆college1980-90j = τ0 + τ1Prox1980j + τ2Coal1980j + τ3
(
1[Coal1980j > 0]

)
+ X′

jγ + δs + εj (2)

where ∆college1980-90j is the observed change in county j’s (log) adult population with a college

degree or more between 1980 and 1990.32 The variable Prox1980j reflects county j’s proximity to

labor demand shocks in all other U.S. counties during the 1980s. Specifically, it is the gravity-

weighted predicted employment change in all other U.S. counties j′ ̸= j (i.e., the sum of Bartik

employment shocks in each other county j
′

weighted by the distance between county j and j
′
):33

Prox1980j =
∑
j′

ω1980
jj′

×∆Z1980-90
j′

(3)

where ω1980
jj

′ is a weight that describes the distance between county j and county j
′
,34 and ∆Z1980-90

j
′

is the 1980–1990 employment shock in other county j
′

predicted by a standard, Bartik-style leave-

one-out shift-share instrument (Bartik, 1991; Blanchard and Katz, 1992; Notowidigdo, 2020).35

32This analysis predicts changes in the number of college-educated adults, capturing selective migration in absolute
terms. Robustness checks further examine the change in the share of college-educated workers.

33The sample used to estimate equation 2 includes only Appalachian counties, but non-Appalachian counties are
included in the construction of Prox1980

j .
34ω1980

jj
′ is defined as:

ω1980
jj′ ≡

Pj′D
−δ
jj′∑

k PkD
−δ
jk

(4)

where Pj′ reflects the initial-period (1980) population in county j′, Djj′ reflects the distance between counties j and j′,
and δ is the trade-cost elasticity which, as in Autor et al. (2021), I set equal to 5. The conclusions are insensitive to the
specific trade-cost elasticity used here. Additionally, using initial-period migration networks or commuting flows as
weights rather than the distance-based measure does not alter the conclusions.

35∆Z1980-90
j
′ is defined as:

∆Z1980-90
j
′ =

∑
k∈K

s1980
j
′
k

×∆emp1980-90
−j

′
k

(5)
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In equation 2, Coal1980j reflects the coal share of the adult population in 1980, which de-

termines a county’s exposure to the historical decline in demand for coal. As in equation 1, X′
j

represents the initial (1980) share of the population that is foreign-born, the female share of em-

ployment, and the share of adults with a college degree, 1[Coal1980j > 0] is a dummy variable

indicating whether the county had positive coal employment in 1980, and δs reflects state fixed

effects. The inclusion of the 1980 coal share, control variables, and state fixed effects improves

precision but does not alter the qualitative conclusions of this exercise.

I estimate equation 2 using the sample of 413 Appalachian counties, weighting observations

by 1980 population counts, and then predict ∆ ̂collegej
1980-90

for each county to arrive at the selec-

tive migration predicted by exogenous shocks.36 The intuition for this approach is that an individ-

ual’s migration decisions depend on the economic circumstances in their local labor market and

the economic circumstances in related labor markets which influence local economic activity. Cer-

tain regions are well-positioned for industrial expansions because of their initial industry mixes,

and more proximate communities are better positioned to gain from these plausibly exogenous

demand shifts. Visually, the major ingredient in equation 2 and the resulting predicted selective

migration can be seen in Figure 7. Panel A displays a heat map of the (standardized) values for

Prox1980j across Appalachia, where darker shading indicates closer proximity to (predicted) em-

ployment growth. Panel B of Figure 7 displays the (standardized) values for ∆ ̂collegej
1980-90

,

where darker shading indicates larger increases in the predicted change in the college-educated

population over the 1980s. Those counties with the lightest shading are those with predicted losses

in the college-educated adult population over this decade.

To assess whether the adjustment costs associated with the 2007–2017 coal shock depend on

a place’s history of selective migration induced by shocks, I bifurcate counties into two groups

based on ∆ĉollege
1980-90
j and compare the employment and population adjustment to the 2007–

2017 coal shock across these two groups of counties. I define counties in the lowest quartile of

∆ĉollege
1980-90
j (i.e., those with greater selective migration or brain drain) as migrj = 1, and the

remainder as migrj = 0. There is nothing special about the bottom quartile versus other potential

cutoffs (e.g., the bottom tercile or bottom half), and the conclusions are robust to alternative group-

ing methods and incorporating a continuous measure of predicted selective migration, detailed

where s1980
j
′
k

is the fraction of county j
′

employment in 3-digit industry k in 1980 (the “share”), and ∆emp1980-90
−j

′
k

reflects

the growth rate of industry k from 1980 to 1990 in all counties except county j
′

(the “shift”). I use the CBP-imputed
industry-employment counts provided by Eckert et al. (2020) to produce ∆Z1980-90

j
′ .

36The first-stage F-statistic on Prox1980
j in equation 2 is 14.9.
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Figure 7: Proximity to employment growth and predicted population change

Panel A: Proximity to predicted 1980s
employment growth

Proximity
(standardized)

−3
−2
−1
0
1
2

Panel B: Predicted change in college-educated
adults, 1980—1990

Predicted 
college change 
(standardized)

−2

0

2

4

Notes: Panel A reflects the (standardized) values for the variable Prox1980
j , calculated as described in text. This variable

captures a county’s gravity-weighted proximity to other counties’ predicted employment growth over the 1980–1990
decade. Darker shading reflects counties that are closer in proximity to regions with (predicted) employment growth.

Panel B reflects the (standardized) values for the ∆ĉollege
1980-90
j variable, calculated as described in text. This variable

reflects the predicted change in the college-educated adult population (ages 25 and older) in a county between 1980
and 1990. Darker shading reflects counties with larger predicted increases in the number of college-educated adults.
Lighter shading implies that counties hold low or negative values for the change in the college-educated population
over this decade.

in Section 4.2.3. I then re-estimate a modified version of equation 1 for the contemporary period

(2007–2017), interacting the coal shock ∆Coal2007-17j with a dummy variable indicating whether

county j was in the selective migration group (migrj = 1) or not (migrj = 0):

∆y2007-17j = α0 + α1

(
∆Coal2007-17j × 1[migrj = 0]

)
+ α2

(
∆Coal2007-17j × 1[migrj = 1]

)
+α3

(
1[Coal2007j > 0]

)
+ X′

jγ + δs + εj

(6)

As in equation 1, I include a vector of initial (2007) county-level controls X′
j (the share of the popu-

lation that is foreign-born, the female share of employment, and the share of adults with a college

degree), a dummy for having coal employment in 2007 1[Coal2007j > 0], state fixed effects δs, and

I instrument for ∆Coal2007-17j with Coal2007j . Observations are again weighted by the initial (2007)

county population, although the conclusions are insensitive to the weighting scheme. Compar-

ing the coefficient estimates α1 and α2 provides a comparison of the effect of the 2007–2017 coal

shock on the change in outcome y across groups of counties with more or less selective migration

induced by historical shocks. Notably, because the vector of controls X′
j includes the initial (2007)
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share of adults with a college degree, this approach reveals differential responses to the 2007–2017

coal shock conditional on the initial skill composition of the population.

4.2.2 Selective migration and adjustment to the 2007–2017 coal shock

Table 4 presents the central point estimates of α1 and α2 from equation 6 for seven different out-

comes across Appalachian counties. I consider employment, population, and various county-

wide measures of earnings and income adjustments to the 2007–2017 coal shock. The point esti-

mates in the first row represent these adjustment costs for the 310 Appalachian counties for which

migrj = 0, with lower levels of selective migration in the 1980s resulting from historical shocks.

The point estimates in the second row represent these adjustment costs for the remaining 103 Ap-

palachian counties, where migrj = 1. The point estimates in each column are produced from a

single regression.

Table 4: Historical selective migration and adjustment to the 2007–2017 coal shock

(1) (2) (3) (4) (5) (6) (7)
Change in outcome over 2007–2017 period

ln(wage
& salary
employ-

ment)

ln(pop
ages

20–64)

emp:
popula-

tion ratio

ln(wages
&

salaries)

ln(wages
&

salaries
per emp)

ln(pers.
income)

ln(pers.
income

per
capita)

Coal shock07-17 × 1[migrj = 0] -2.22*** -0.67* -0.86*** -3.26*** -1.04** -0.46 0.08
(0.54) (0.35) (0.26) (0.89) (0.47) (0.45) (0.51)

Coal shock07-17 × 1[migrj = 1] -4.92*** -2.65*** -1.15*** -7.82*** -2.90*** -3.35*** -1.62***
(1.15) (0.80) (0.44) (1.73) (0.78) (0.89) (0.57)

Controls ✓ ✓ ✓ ✓ ✓ ✓ ✓
State FE ✓ ✓ ✓ ✓ ✓ ✓ ✓
P-val(α1 = α2) 0.033 0.022 0.558 0.020 0.038 0.004 0.021
Observations 413 413 413 413 413 413 413

All regressions are weighted by initial county population and include state fixed effects and a dummy variable indi-
cating whether the county had positive coal employment at the beginning of the period. Robust standard errors are
in parentheses. Controls include the initial (2007) share of the population that is foreign-born, the female share of em-
ployment, and the share of adults with a college degree. migrj = 1 if county j is in the bottom quartile of Appalachian
counties in terms of the predicted change in college-educated adults (ages 25+) between 1980 and 1990, as described in
text, and migrj = 0 otherwise. I instrument for the 2007–2017 coal shock with the coal share in 2007. Outcome variables
are defined in changes over the 2007–2017 period, and are retrieved from the BEA Regional Economic Accounts. The
p-value refers to the p-value testing the equality of the point estimates on Coal shock07-17 × 1[migrj = 0] and Coal
shock07-17 × 1[migrj = 1].
*** p<0.01, ** p<0.05, * p<0.1

The estimates in Table 4 indicate that the adverse consequences of the 2007–2017 coal shock

are magnified in counties that experienced more selective migration predicted by historical shocks.

The point estimates in column 1 indicate that the effect of the 2007–2017 coal shock on the number
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of employees is over twice as large in counties for which migrj = 1 (a 1-unit increase in the coal

shock yields nearly a 5 percent decline in employment) compared to other Appalachian counties

(a 2.2 percent decline). The effect of the 2007–2017 coal shock on the working-age adult popula-

tion (column 2) is nearly four times larger in this selective migration group of counties. A 1-unit

increase in the coal shock suppresses the employment rate (column 3) by 1.15pp in the migrj = 1

group, compared to 0.86pp for other Appalachian counties, although the difference in these esti-

mates is not statistically distinguishable from zero. Total county-level earnings (column 4) fall by

nearly 8 percent in the migrj = 1 quartile, an adjustment more than double the magnitude of the

remaining Appalachian counties (3.26 percent). Wages per employee (column 5) fall by nearly 3

times as much in the migrj = 1 quartile, and this group of counties experiences the only statisti-

cally detectable decline in personal income (column 6) and personal income per capita (column 7)

in response to the 2007–2017 coal shock. While wage and income effects are likely driven to some

extent by simultaneous compositional shifts in the population, declines in these measures reflect

real declines in economic activity and a shrinking of the local tax base, which may have residual

consequences for residents who remain. For nearly all outcomes, I can reject that the coefficient

on the 2007–2017 coal shock is the same for the two groups of counties.37

By controlling for the initial share of adults with a college degree, Table 4 reveals differential

responses to the 2007–2017 coal shock conditional on the initial skill composition of the popula-

tion. This complements research documenting the importance of the stock of human capital in

shaping economic activity (Glaeser et al., 1995; Glaeser, 2005; Gennaioli et al., 2014; Gagliardi et

al., 2023) by highlighting the importance of human capital flows.38 These findings suggest that

coal’s recent decline imposed significantly larger adjustment costs on counties that experienced

greater selective migration following historical shocks. Shifts in human capital endowments re-

sulting from shocks in one period may weaken a community’s capacity to adjust to subsequent

shocks, leading to a more sluggish recovery in areas shaped by adverse historical experiences.

37Note that a 1pp coal shock reflects a much smaller percentage change in the coal share in counties in the migrj = 1
quartile compared to other Appalachian coal counties. The population-weighted average 2007 coal employment share
of the working-age-adult population was 3.83 percent for coal counties in the bottom quartile, compared to 0.66 percent
in other coal counties. Thus, the estimates in Table 4 likely understate the differences in adjustment costs when the shock
is defined to reflect similar magnitudes of employment change. The estimated effect of the coal shock in the migrj = 1
quartile is also much larger if expressed in terms of a 1-SD increase, as the standard deviation of the 2007–2017 coal
shock was much larger for the migrj = 1 quartile (3.08pp) versus other coal counties (1.28pp).

38There is a strong empirical relationship between these flows and later stocks: the correlation coefficient between

the predicted decline in college-educated adults during the 1980s (∆ĉollege
1980-90
j ) and the 2007 college share is 0.60.

While this raises a potential concern that the 2007 control vector (X′
j) includes post-treatment variables, the conclusions

are robust to omitting these controls.
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4.2.3 Selective migration and adjustment to shocks: Robustness to alternative specifications

Employment shifts in one period might be correlated with employment shifts in subsequent pe-

riods, such that proximity to employment shifts in other counties in the 1980s (Prox1980j ) is asso-

ciated with proximity to employment shifts in subsequent decades, which could affect contempo-

rary outcomes in important ways. Thus, the differential consequences of the contemporary coal

shock observed in Table 4 could reflect differential exposure to more recent (non-coal) employment

shocks which are correlated with Prox1980j . In Appendix Table A3, I use alternative specifications

to estimate equation 6 for the three primary outcome variables (employment, population, and em-

ployment rate changes), although the conclusions are similar when considering a wider range of

outcomes. These alternative specifications (i) directly control for historical exposure to shocks, (ii)

isolate the selective migration predicted by Prox1980j , and (iii) redefine selective migration based

on the change in the college-educated share of the adult population.

The estimates in Panel A of Appendix Table A3 follow the primary specification described

above, adding controls for Prox1980j and Coal1980j to equation 6 in all even-numbered columns.

These controls absorb the legacy consequences of exposure to historical shocks, including spa-

tial proximity to other affected regions and direct exposure to past coal declines. In Panel B, I

re-estimate ∆ĉollege
1980-90
j using only Prox1980j , omitting Coal1980j , 1[Coal1980j > 0], X′

j , and δs

from the estimation of equation 2. This specification isolates the variation in predicted selective

migration driven by proximity to external labor demand shocks, rather than by historical coal con-

ditions. This helps address the concern that persistent coal-sector characteristics could confound

the relationship between historical and recent coal declines.39 In Panel C, I define ∆ĉollege
1980-90
j

as the predicted change in the college-educated share of the adult population over the 1980–1990

decade. The magnitude of the point estimates is quite stable across all three panels. That is, the dif-

ferential adjustment costs observed in Table 4 across places with more or less selective migration

cannot be explained by the legacy of spatially proximate shocks nor the direct effect of historical

coal shocks. They are also not solely the result of general declines in adult population counts

which are correlated with losses in college-educated adults, as controlling for lagged population

or employment changes does not alter the conclusions drawn from Tables 4 and A3. Thus, the

adjustment to the contemporary coal shock is larger in places where prior shocks eroded local

human capital endowments, conditional on the simultaneous decline in population counts.40

39The correlation between Coal1980j and Prox1980
j is extremely weak, with a correlation coefficient of 0.028.

40Appendix Table A4 confirms that the main conclusions hold when using only 1980 covariates or omitting the
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Additionally, Appendix Figure A2 and Appendix Table A5 show that the main conclusions

are robust to using a continuous measure of predicted selective migration and to alternative def-

initions of the selective migration group. Appendix Figure A2 plots the relationship between the

predicted change in the number of college-educated adults (ages 25+) between 1980 and 1990 (x-

axis) and the estimated effect of the 2007–2017 coal shock (y-axis). The effect of the coal shock is

estimated using a modified version of equation 1 that adds as regressors ̂∆college
1980-90
j and its in-

teraction with ∆Coal2007-17j . The upward-sloping pattern indicates that the negative effects of the

coal shock are largest in counties with lower predicted growth in college-educated adults — con-

sistent with the idea that selective migration may amplify the adjustment costs of future shocks.

Appendix Table A5 demonstrates that the estimated heterogeneity in adjustment costs is stable

across alternative binary definitions of the migration group, using cutoff points at the bottom half,

third, and fifth of the distribution of predicted changes in college-educated adults.

Spatially proximate shifts in employment demand could affect the skill composition of Ap-

palachian coal counties beyond the 1980s. Further, industries that experienced employment booms

(or busts) in the 1980s may have continued to expand or contract in subsequent decades. To

account for this, I repeat the exercise above, but I predict the change in the number of college-

educated adults over a longer time horizon — between 1980 and 2007 — and I use this predicted

value, ∆ĉollege
1980-07
j , to bifurcate counties. Again, I define counties as migrj = 1 or migrj = 0

based on whether they are in the bottom quartile of this predicted value. I use the same specifica-

tion to predict the change in the number of college-educated adults between 1980 and 2007 as in

equation 2, but I add two additional terms to the right-hand side of the equation: the proximity to

predicted employment growth between 1990 and 2000 (Prox1990j ), and the proximity to predicted

employment growth between 2000 and 2007 (Prox2000j ). These variables are defined analogously

to Prox1980j detailed by equation 3.41

The estimates produced using this strategy are reported in Appendix Table A6. This ap-

proach yields similar results to those reported in Table 4. As before, the conclusions drawn from

Appendix Table A6 are qualitatively similar after controlling for Prox1980j , Prox1990j , and Prox2000j ,

control vector entirely. This addresses concerns that including 2007-era controls may condition on variables potentially
influenced by earlier selective migration.

41The weight remains the same in the construction of these new proximity variables, as defined in equation 4. The
only change is to ∆Zj′ , which is defined over the relevant period (1990–2000 or 2000–2007). For example, Prox1990

j =∑
j
′ ω1980

jj
′ × ∆Z1990-2000

j
′ , and ∆Z1990-2000

j
′ =

∑
k∈K s1990

j
′
k

× ∆emp1990-2000
−j

′
k

. Thus, Prox1990
j reflects the proximity

to predicted employment growth in the 1990s, and Prox2000
j reflects the proximity to predicted employment growth

between 2000 and 2007.
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and Coal1980j (displayed in even-numbered columns), indicating that differential proximity to his-

torical employment shifts is not driving the differential effect of the 2007–2017 coal shock across

the two groups of counties. Both approaches yield the same conclusion: The adjustment costs

associated with the contemporary coal shock are more acute in counties that experienced larger

declines in college-educated adults in decades prior due to exogenous, historical demand shifts.

4.3 Mechanisms: The role of business formation

What mechanisms drive the relationship between selective migration and resilience to shocks?

The model indicates that ”high-type” workers — those who are better-educated or more produc-

tive — facilitate economic activity by driving the establishment of new firms. Selective migration

diminishes the stock of these workers, stifling entrepreneurial activity and hindering local non-

coal firm growth in subsequent periods. Consistent with other research documenting the relation-

ship between the population composition and entrepreneurial activity, the model predicts that

this reduced stock of high-type workers leads to fewer new firm entries, thereby exacerbating the

consequences of future adverse shocks.

While other mechanisms are also likely at play, this section presents evidence of the mech-

anism implied by the model.42 There is a strong relationship between the change in the number

of college-educated adults in the 1980s and the number of new business establishments in sub-

sequent periods. The Census Bureau’s Business Dynamics Statistics (BDS) program offers annual

measures of new, net, and gross flows of establishments and job creation by county. To understand

the relationship between a changing college-educated population and the rate of establishment

entry, I estimate the following equation:

∆est1980−t
j = β0 + β1∆college1980-90j + β2Coal1980j + β3

(
1[Coal1980j > 0]

)
+ X′

jγ + δs + εj (7)

where ∆est1980−t
j is the change in the number of new business establishments between 1980 and

year t. I define the number of new business establishments in year t as the rolling average in

the 5-year window around year t to purge idiosyncratic annual fluctuations in business entry.

The primary independent variable ∆college1980-90j is the observed 1980 –1990 change in county

j’s (log) adult population with a college degree or more. I instrument for ∆college1980-90j with

42For example, business formation may also reflect consumer market access or increased demand for local services
rather than entrepreneurship alone. While I am unable to distinguish between these channels, the evidence is consistent
with the model and existing work documenting the role of human capital in entrepreneurship and business formation
(e.g., Glaeser et al., 2010; Doms et al., 2010).
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the proximity variable Prox1980j defined in equation 3 to isolate the change attributable to exoge-

nous employment shocks in proximate labor markets. These population-weighted regressions

also control for the 1980 coal share of the working-age-adult population Coal1980j , a dummy vari-

able 1[Coal1980j > 0] indicating whether the county had any coal employment in 1980, a vector of

1980 county-level covariates X′
j (foreign-born share of population, female share of employment,

and the share of adults with a college degree), and state fixed effects δs. I conduct a separate

regression each period 1980–t for t ∈ {1982, 1987, ..., 2017}.

Figure 8: Change in college-educated adults in the 1980s and establishment entry and job
creation, 1980 to 2017

Panel A: Change in number of new business
establishments (5-year rolling average)

Panel B: Change in job creation (100s) from
opening and expanding establishments (5-year

rolling average)

Notes: Sample includes only Appalachian counties. Each marker reflects the coefficient estimate and 95 percent con-
fidence interval of a separate regression for each time difference between 1980–1982 and 1980–2017. The dependent
variable in Panel A is the change in the number of new establishments between 1980 and the year depicted on the
horizontal axis. The dependent variable in Panel B is the change in the number of new jobs (in 100s) created by new
and expanding business establishments between 1980 and the year depicted on the horizontal axis. Both dependent
variables are divided by 100 for ease of interpretation. The primary independent variable is the change in the natural
log of the college-educated adult population (ages 25 and older) in the 1980s, which is instrumented for with a vari-
able that depicts a county’s proximity to predicted employment growth over the 1980–190 decade, described in text.
All regressions are weighted by initial county population and include state fixed effects, 1980 county-level covariates
(foreign-born share of population, female share of employment, and the share of adults with a college degree), a control
for the share of the adult population (ages 20–64) employed in coal mining in 1980, and a dummy variable for having
any coal employment in 1980.

The coefficient estimates and 95 percent confidence intervals for these 8 separate regressions

are presented in Panel A of Figure 8. While the instrumented change in the number of college-

educated adults in the 1980s has no immediate impact on the rate of new business entry, this

relationship manifests over progressively larger time horizons. The point estimate reflected by

the rightmost coefficient in Panel A indicates that, by 2017, a 1 percent increase (decline) in the

college-educated population in the 1980s is associated with an increase (decline) in the rate of
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business entry of about 13 new establishments per year compared to 1980 levels. The relationship

between the number of college-educated adults and firm entry is not solely driven by a mechanical

relationship between population size and business activity: These results are qualitatively similar

if one defines the primary independent variable as the change in the college-educated share of

the adult population between 1980 to 1990, rather than the change in the aggregate number of

college-educated adults.

Establishments vary substantially in size and scope for generating local economic activity.

An establishment that employs two workers might have a lesser capacity to influence a com-

munity’s economic trajectory than one employing several hundred workers. The BDS provides

annual estimates of the number of jobs created by opening and expanding establishments, which

provides a proxy for the magnitude of firm entrants’ size. Defining the outcome variable as the

change in the number of new jobs created (in 100s) by opening and expanding establishments

between 1980 and year t demonstrates a similar pattern, as reflected in Panel B of Figure 8.43 The

point estimate reflected by the rightmost coefficient in Panel B indicates that, by 2017, a 1 percent

increase (decline) in the college-educated population in the 1980s is associated with an increase

(decline) of nearly 330 new jobs per year by opening and expanding establishments compared to

1980 levels of job creation. Broadly, this evidence is consistent with the mechanism implied by the

model: firm growth in future periods depends on skill endowments affected by shocks in the cur-

rent period. Again, because the vector of controls in equation 7 includes the initial (1980) stock of

human capital in terms of the share of adults with a college degree, these results indicate that flow

of human capital might be independently important to the evolution of local economic activity.

5 Conclusion and discussion

Local labor demand shocks can fundamentally alter the skill composition of affected areas via se-

lective migration, with greater net out-migration among more skilled or college-educated adults

(Topel, 1986; Bound and Holzer, 2000; Glaeser and Gyourko, 2005; Wozniak, 2010). While out-

migration from under-performing areas is an important regional adjustment mechanism, shock-

induced changes in local human capital endowments may make certain communities more vul-

nerable to future economic challenges. This paper demonstrates how these forces may contribute

to broader patterns of regional decline and thus amplify underlying spatial inequality.

I consider this phenomenon in the context of Appalachia’s coal country. Declines in demand
43I again define the number of new jobs as the rolling average within a 5-year window of year t.
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for coal between 2007 and 2017 reduced county-level employment, population, earnings, and in-

come. Both aggregate and average earnings and total personal incomes declined, consistent with

other literature documenting large community- and individual-level consequences of regionally

concentrated shocks (e.g., Blanchard and Katz, 1992; Black et al., 2005a; Autor et al., 2013, 2014;

Amior and Manning, 2018; Colmer et al., 2024; Rud et al., 2024). Unlike other settings, population

mobility in Appalachia remains relatively responsive to deteriorating labor market conditions.

These migration responses are highly selective, such that adverse shocks reduce human capital

endowments in affected communities. Consistent with a model linking selective migration to

longer-run economic trajectories, I find that the adjustment costs resulting from the 2007–2017

coal shock were more acute in counties that experienced greater degrees of selective migration

in preceding periods. I document one potential mechanism behind this pattern: by reducing the

number of college-educated residents, historical shocks may suppress later business formation,

shaping how regions respond to future disruptions. While other mechanisms may also play a

role, the results underscore the lasting importance of human capital flows in regional adjustment.

These findings have implications for how economists and policymakers understand local

adjustment costs in declining labor markets and the consequences of large-scale shifts in the eco-

nomic and energy landscape going forward. The evidence presented here indicates that the selec-

tivity of population mobility following employment shifts can have long-term consequences on

the capacity of remaining residents to adjust to new economic challenges. While migration is an

important indication that certain individuals are adjusting to adverse shocks, relatively immobile,

less-educated residents remaining in affected communities may suffer greater consequences as a

result of historical population adjustments. Retaining, building, or attracting a relatively skilled

workforce might improve places’ capacity to adapt to new economic challenges (Bollinger et al.,

2011; Black and Sanders, 2012; Kahn, 2012; Islam et al., 2015), and potentially slow or reverse the

process of regional decline.

The ongoing transition away from fossil fuels will likely exacerbate these challenges. This

paper quantifies the population and economic loss in places most exposed to this energy tran-

sition, showing that the self-reinforcing process of decline fueled by the exit of better-educated

workers has left communities with lesser capacity to adjust to recent challenges. Recurrent shocks

to coal employment have reshaped the demographic and economic structure of affected regions,

likely elevating the risks associated with the energy and economic shifts ahead. While quantify-

ing adjustment costs is a critical first step in identifying appropriate transition assistance, further
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research is needed to evaluate what interventions might be most effective at mitigating long-term

economic distress in historically coal-dependent and other fossil fuel-reliant communities.
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Appendix

A Appendix Figures and Tables

Figure A1: Distribution of population change in Appalachia, 1980–2007

Panel A: Change in ln(ages 20–64) Panel B: Change in share under age 40

Panel C: Change in share of college-share of adults
(25+)

Notes: The county-level change in the variable of interest between 1980 and 2007 is expressed in deviation from the
population-weighted U.S. average. Appalachian coal counties include those in which at least 0.537 percent of the
adult population was employed in coal mining in 2007 (N=65). The 0.537 percent cutoff reflects the median coal share
among counties with any coal mining employment in 2007. 1980-level characteristics are based on estimates produced
from the 1980 Census. Population counts in 2007 are based on the intercensal estimates produced by the U.S. Census.
Educational attainment in 2007 is based on estimates from the 2005–2009 ACS.
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Figure A2: The 2007–2017 coal shock and a continuous measure of historical selective migration

Panel A: ln(wage and salary employment) Panel B: ln(ages 20-64)

Panel C: employment-population ratio

Notes: Each panel presents a binned scatter plot of the relationship between predicted selective migration (x-axis) and
the estimated effect of the 2007–2017 coal shock (y-axis). The x-axis reflects quantiles of the predicted change in the

number of college-educated adults (ages 25+) between 1980 and 1990 ( ̂∆collegej
1980-90

). The y-axis reflects quantiles of
the fitted values from an OLS regression of the change in the outcome described between 2007 and 2017 on the change

in the coal share over the same period ∆Coal2007-17
j , predicted selective migration ̂∆collegej

1980-90
, and the interaction

of ∆Coal2007-17
j and ̂∆collegej

1980-90
. All regressions are weighted by initial county population and include state fixed

effects, a dummy variable indicating whether the county had positive coal employment at the beginning of the period,
and baseline controls: the 2007 foreign-born population share, female employment share, and college-educated share.
The fitted values represent the marginal effect of the coal shock at different levels of predicted selective migration.
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Table A1: Summary statistics for coal shock variables

(1) (2) (3) (4) (5) (6)
Mean SD p50 p75 p95 p99

Coal shock variables, 2007–2017
Coal share, 2007 0.97 2.43 0.18 0.78 4.94 10.40
-1×∆ Coal share, 2007-17 0.38 1.60 0.04 0.22 1.59 6.91
Observations: 129

Coal shock variables, 1980–1990
Coal share, 1980 2.74 5.17 0.56 2.87 13.66 28.13
-1×∆ Coal share, 1980-90 1.33 3.00 0.23 1.30 5.91 20.26
Observations: 169

Coal share refers to the coal employment share of the population ages 20–64. The sample includes Appalachian coun-
ties with positive coal employment in 2007 (2007–2017 statistics) or 1980 (1980–1990 statistics). Statistics are weighted
by initial (2007 or 1980) county population. All variables have been multiplied by 100 for ease of interpretation.

Table A2: Employment and population adjustment to single-period coal shock, 1980–1990

(1) (2) (3) (4) (5)
OLS IV

Panel A: ∆ln(wage and salary employment) 1980–1990
Coal shock, 1980–1990 -3.10*** -3.21*** -2.33*** -2.22*** -2.92***

(0.36) (0.39) (0.31) (0.41) (0.44)

Panel B: ∆ln(population ages 20–64) 1980–1990
Coal shock, 1980–1990 -1.49*** -1.74*** -0.97*** -0.90*** -1.42***

(0.24) (0.30) (0.19) (0.24) (0.30)

Panel C: ∆ employment:population ratio, 1980–1990
Coal shock, 1980–1990 -0.94*** -0.90*** -0.73*** -0.46*** -0.49***

(0.11) (0.13) (0.13) (0.16) (0.16)

State FE ✓ ✓ ✓
Baseline controls ✓ ✓
Additional controls ✓
F-stat 67.47 67.50 60.52 61.05
Observations 413 413 413 413 413

All regressions are weighted by initial (1980) county population. Robust standard errors are in parentheses. Baseline
controls include the initial (1980) share of the population that is foreign-born, the female share of employment, the share
of adults with a college degree, and a dummy variable indicating whether the county had positive coal employment at
the beginning of the period. Additional controls include the initial (1980) share of the population ages 0-19, 20-39, and
40-59. The coal shock is defined as -1 times the change in the coal employment share of the adult population (ages 20–
64) over the 1980–1990 period. I instrument for the coal shock in columns 2-5 with the coal share in 1980. The first-stage
F-stat on the instrument is reported in the second row from the bottom. Outcome variables are retrieved from the BEA
Regional Economic Accounts.
*** p<0.01, ** p<0.05, * p<0.1
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Table A3: Historical selective migration and adjustment to the 2007–2017 coal shock, alternative
specifications

(1) (2) (3) (4) (5) (6)
Change in outcome over 2007–2017 period

ln(wage & salary emp) ln(pop ages 20–64) emp:population ratio

Panel A: Primary specification
Coal shock07-17 × 1[migrj = 0] -2.22*** -2.21*** -0.67* -0.14 -0.86*** -1.12***

(0.54) (0.57) (0.35) (0.24) (0.26) (0.24)
Coal shock07-17 × 1[migrj = 1] -4.92*** -4.10*** -2.65*** -1.64*** -1.15*** -1.14***

(1.15) (0.84) (0.80) (0.48) (0.44) (0.39)
P-val(α1 = α2) 0.033 0.090 0.022 0.006 0.558 0.967

Panel B: Predict ̂∆collegej
1980-90

using only Prox1980
j

Coal shock07-17 × 1[migrj = 0] -2.44*** -2.48*** -0.84** -0.37 -0.91*** -1.16***
(0.51) (0.56) (0.41) (0.33) (0.23) (0.21)

Coal shock07-17 × 1[migrj = 1] -5.07*** -4.17*** -2.75*** -1.66*** -1.11** -1.07**
(1.39) (0.99) (0.98) (0.53) (0.52) (0.47)

P-val(α1 = α2) 0.072 0.168 0.065 0.039 0.716 0.856

Panel C: Define ̂∆collegej
1980-90

based on 1980–1990 change in college share of adult pop
Coal shock07-17 × 1[migrj = 0] -2.40*** -2.37*** -0.84** -0.37 -0.89*** -1.09***

(0.48) (0.49) (0.39) (0.27) (0.22) (0.20)
Coal shock07-17 × 1[migrj = 1] -5.61*** -4.71*** -3.05** -1.89** -1.21** -1.21**

(1.76) (1.26) (1.22) (0.73) (0.60) (0.53)
P-val(α1 = α2) 0.073 0.110 0.076 0.045 0.594 0.845

Baseline controls ✓ ✓ ✓ ✓ ✓ ✓
State FE ✓ ✓ ✓ ✓ ✓ ✓
Controls for lagged exposure ✓ ✓ ✓
Observations 413 413 413 413 413 413

All regressions are weighted by initial county population and include state fixed effects and a dummy variable indi-
cating whether the county had positive coal employment at the beginning of the period. Robust standard errors are in
parentheses. Baseline controls include the initial (2007) share of the population that is foreign-born, the female share of
employment, and the share of adults with a college degree. Specifications in even-numbered columns include controls
for both Prox1980

j and Coal1980j . In Panel A, migrj = 1 if county j is in the bottom quartile of Appalachian counties in
terms of the predicted change in college-educated adults (ages 25+) between 1980 and 1990, as described in text, and

migrj = 0 otherwise. The approach to bifurcate counties in Panel B is analogous to A, except ∆ ̂college1980−90
j is pre-

dicted using only Prox1980
j . The approach to bifurcate counties in Panel C is analogous to A, except I predict the change

in the college share of the adult population between 1980 and 1990 using the approach in equation 2. I instrument for the
2007–2017 coal shock with the coal share in 2007. Outcome variables are defined in changes over the 2007–2017 period,
and are retrieved from the BEA Regional Economic Accounts. The p-value refers to the p-value testing the equality of
the point estimates on Coal shock07-17 × 1[migrj = 0] and Coal shock07-17 × 1[migrj = 1].
*** p<0.01, ** p<0.05, * p<0.1
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Table A4: Historical selective migration and adjustment to the 2007–2017 coal shock, alternative
controls

(1) (2) (3) (4) (5) (6)
Change in outcome over 2007–2017 period

ln(wage & salary emp) ln(pop ages 20–64) emp:population ratio

Coal shock07-17 × 1[migrj = 0] -2.64*** -2.10*** -1.13* -0.54 -0.78*** -0.85***
(0.60) (0.53) (0.60) (0.40) (0.25) (0.24)

Coal shock07-17 × 1[migrj = 1] -5.68*** -4.51*** -3.67*** -2.47*** -0.95** -1.08**
(1.60) (1.27) (1.36) (0.93) (0.47) (0.51)

1980 controls ✓ ✓ ✓
State FE ✓ ✓ ✓ ✓ ✓ ✓
P-val(α1 = α2) 0.080 0.076 0.091 0.054 0.741 0.669
Observations 413 413 413 413 413 413

All regressions are weighted by 1980 county population and include state fixed effects and a dummy variable indicating
whether the county had positive coal employment in 1980. Robust standard errors are in parentheses. Specifications in
even-numbered columns include controls for the 1980 share of the population that is foreign-born, the female share of
employment, and the share of adults with a college degree. Following the primary specification, migrj = 1 if county j
is in the bottom quartile of Appalachian counties in terms of the predicted change in college-educated adults (ages 25+)
between 1980 and 1990, as described in text, and migrj = 0 otherwise. Outcome variables are defined in changes over
the 2007–2017 period, and are retrieved from the BEA Regional Economic Accounts. The p-value refers to the p-value
testing the equality of the point estimates on Coal shock07-17 × 1[migrj = 0] and Coal shock07-17 × 1[migrj = 1].
*** p<0.01, ** p<0.05, * p<0.1
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Table A5: Historical selective migration and adjustment to the 2007–2017 coal shock, alternative
cutoffs

(1) (2) (3)
Change in outcome over 2007–2017 period

ln(wage & salary emp) ln(pop ages 20–64) emp: population ratio

Panel A: migrj = 1 if bottom 50% of ̂∆collegej
1980-90

Coal shock07-17 × 1[migrj = 0] -1.65** -0.28 -0.78***
(0.67) (0.24) (0.30)

Coal shock07-17 × 1[migrj = 1] -5.11*** -2.76*** -1.20***
(1.07) (0.71) (0.42)

P-val(α1 = α2) 0.005 0.001 0.399

Panel B: migrj = 1 if bottom 33% of ̂∆collegej
1980-90

Coal shock07-17 × 1[migrj = 0] -1.71*** -0.37* -0.77***
(0.56) (0.20) (0.29)

Coal shock07-17 × 1[migrj = 1] -5.32*** -2.84*** -1.24***
(1.15) (0.79) (0.44)

P-val(α1 = α2) 0.004 0.003 0.350

Panel C: migrj = 1 if bottom 20% of ̂∆collegej
1980-90

Coal shock07-17 × 1[migrj = 0] -2.36*** -0.78** -0.90***
(0.51) (0.38) (0.24)

Coal shock07-17 × 1[migrj = 1] -5.02*** -2.72*** -1.12**
(1.30) (0.91) (0.48)

P-val(α1 = α2) 0.053 0.044 0.671

Baseline controls ✓ ✓ ✓
State FE ✓ ✓ ✓
Observations 413 413 413

All regressions are weighted by initial county population and include state fixed effects and a dummy variable indi-
cating whether the county had positive coal employment at the beginning of the period. Robust standard errors are in
parentheses. Baseline controls include the initial (2007) share of the population that is foreign-born, the female share of
employment, and the share of adults with a college degree. In Panel A, migrj = 1 if county j is in the bottom half of
Appalachian counties in terms of the predicted change in college-educated adults (ages 25+) between 1980 and 1990,
as described in text, and migrj = 0 otherwise. In Panel B, migrj = 1 if county j is in the bottom third of Appalachian
counties in terms of this predicted change, and migrj = 0 otherwise. In Panel C, migrj = 1 if county j is in the bottom
fifth of Appalachian counties in terms of this predicted change, and migrj = 0 otherwise. I instrument for the 2007–
2017 coal shock with the coal share in 2007. Outcome variables are defined in changes over the 2007–2017 period, and
are retrieved from the BEA Regional Economic Accounts. The p-value refers to the p-value testing the equality of the
point estimates on Coal shock07-17 × 1[migrj = 0] and Coal shock07-17 × 1[migrj = 1].
*** p<0.01, ** p<0.05, * p<0.1
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Table A6: Historical selective migration and adjustment to the 2007–2017 coal shock, based on
1980–2007 population changes

(1) (2) (3) (4) (5) (6)
Change in outcome over 2007–2017 period

ln(wage & salary emp) ln(pop ages 20–64) emp:population ratio

Coal shock07-17 × 1[migrj = 0] -2.22*** -2.49*** -0.52** -0.41* -0.95*** -1.13***
(0.28) (0.34) (0.22) (0.22) (0.15) (0.16)

Coal shock07-17 × 1[migrj = 1] -5.22*** -4.47*** -3.17*** -1.63** -1.02* -1.24**
(1.44) (1.20) (1.06) (0.72) (0.58) (0.60)

Baseline controls ✓ ✓ ✓ ✓ ✓ ✓
State FE ✓ ✓ ✓ ✓ ✓ ✓
Controls for lagged exposure ✓ ✓ ✓
P-val(α1 = α2) 0.037 0.097 0.014 0.082 0.902 0.847
Observations 413 413 413 413 413 413

All regressions are weighted by initial county population and include state fixed effects and a dummy variable indi-
cating whether the county had positive coal employment at the beginning of the period. Robust standard errors are in
parentheses. Baseline controls include the initial (2007) share of the population that is foreign-born, the female share of
employment, and the share of adults with a college degree. Specifications in even-numbered columns include controls
for Prox1980

j , Prox1990
j , Prox2000

j , and Coal1980j , defined in text. migrj = 1 if county j is in the bottom quartile of
Appalachian counties in terms of the predicted change in college-educated adults (ages 25+) between 1980 and 2007,
and migrj = 0 otherwise. The change in college-educated adults is estimated following a modified version of equation
2 that includes Prox1990

j and Prox2000
j . I instrument for the 2007–2017 coal shock with the coal share in 2007. Outcome

variables are defined in changes over the 2007–2017 period, and are retrieved from the BEA Regional Economic Ac-
counts. The p-value refers to the p-value testing the equality of the point estimates on Coal shock07-17 × 1[migrj = 0]
and Coal shock07-17 × 1[migrj = 1].
*** p<0.01, ** p<0.05, * p<0.1
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B A spatial equilibrium model of coal shocks

This section details the spatial equilibrium model depicted graphically in the primary text. The

model demonstrates how the evolution of local economic activity is dependent upon the number

of “high-type” (i.e., more productive) workers in the local economy and the implications of this for

the relative severity of shocks occurring in subsequent generations. The major prediction is that

the negative consequences of adverse shocks — in terms of wages and population head counts —

are more pronounced in places that have already been exposed to shocks in generations prior.

B.1 Setup

B.1.1 Labor supply and wages

Let there be two types of workers in the economy: high (H) and low (L). Each worker chooses to

live in one of two local labor markets: a coal community or elsewhere. There are a total of H high-

type and L low-type workers in the whole economy and a total of NH high-type and NL low-type

workers living in the coal community. Each worker inelastically supplies one unit of labor to his

local labor market and consumes one unit of housing, such that the number of housing units in

the coal community (S) is equal to the number of workers (NH +NL).1

Workers consume only housing, a tradable (numeraire) good, and receive utility from a vec-

tor of local amenities, A. Let high types living elsewhere receive reservation utility U
H
, and low

types living elsewhere receive reservation utility U
L, where U

H
> U

L. Workers choosing to live

in the coal community receive utility in a single time period according to the following concave

utility function (omitting time subscripts):

U(W,P,A) =


α(W − P −W0) +W0 +Ai W − P ≥ W0

W − P +Ai W − P < W0

where W is the worker’s wage, P is the price of housing, Ai is a worker-specific amenity parame-

ter, and W0 is defined such that W −P > W0 for all high types and W −P < W0 for all low types.

All high types living in the coal community earn wages W = WH and all low types earn wages

1The simplifying assumption of fixed housing stock is made to make the model analytically tractable by enabling
closed-form solutions, focusing attention on changes in skill composition. While this abstraction does not reflect long-
run population dynamics, the empirical analysis captures actual population decline and complements the model by
quantifying the effects of selective out-migration.
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W = WL. I assume that α < 1, such that there is a decreasing marginal utility to income.2 The

amenity parameters are distributed in the population, where low types have amenity parameters

Ai ∼ Unif(mL,ML) and high types have amenity parameters Ai ∼ Unif(mH ,MH). Let εL and εH

be the values of the amenity parameter for the marginal low- and high-type resident of the coal

county, respectively.

Let there be two types of tradable industries, k ∈ {c, d} = {Coal, Non-coal}. There are Fc firms

in the coal industry and Fd firms in the non-coal industry within the coal community. Revenue is

identical for firms within each industry. A firm in the type k industry hiring nH high-type workers

and nL low-type workers in a single time period makes revenue (omitting time subscripts):

θkb(E)− a(E)2 (8)

where a > 0, b > 0, and θk > 0 is a place-specific productivity parameter for the industry of type

k ∈ {c, d}.3 The term E = nL + ωnH reflects the firm’s effective labor, in which the parameter

ω > 1 captures the fact that high types are relatively more efficient than low types.

Firms have no market power and therefore hire where the marginal revenue product is equal

to the wage. Because firms in the coal and non-coal industries hire from the same pool of workers,

they pay the same wages for workers of the same type. That implies that the wage for high types

(WH ) is equal to the efficiency parameter times wages for low types (ωWL). I solve for wages in

terms of labor supply and relevant production parameters in Appendix C.

In equilibrium, the marginal worker of either type is indifferent between the coal commu-

nity and elsewhere. The static equilibrium is thus characterized by the menu of local wages (WL,

WH ), local housing prices (P ), local population head counts (NL, NH ) and amenity cutoff pa-

rameters (εH , εL) such that demand for high-type labor equals supply of high-type labor, demand

for low-type labor equals supply of low-type labor, and demand for housing equals supply of

housing. The seven equations that characterize these seven equilibrium parameters are detailed

in Appendix C.

B.1.2 Evolution of firms

In any given period t, the number of firms is fixed, but I allow for the evolution of firms to be

dictated by the existing population composition. More explicitly, I assume that the number of

2I also assume that workers do not save and are myopic in their knowledge of local wage and productivity changes.
3θ is the only parameter in the production function that is place-specific.
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firms in the non-coal industry Fd is constrained by the number of high types in the local labor

market. Firms evolve proportionately to the number of high types and the pre-existing stock of

non-coal-industry firms. Specifically, let the number of firms in the non-coal industry in the local

community in period t+ 1 be increasing in the number of high-type workers in period t:

Fd,t+1 = δFd,t + γNH
t (9)

where NH
t is the number of high types at time t, γ > 0 reflects the local “entrepreneurship” or

“birth” rate, and 0 < δ < 1 captures the death rate of existing firms in the non-coal industry.4 That

γ is assumed to be greater than zero implies that more (fewer) high types at time t leads to more

(fewer) firms in period t+ 1.

B.2 Coal shocks and the evolution of economic activity

Here, I explore the consequences of shocks to the coal industry. Section B.2.1 considers the evo-

lution of wages and population head counts with respect to a shock to productivity in the coal

industry occurring between period t and period t + 1 (a “first-period” shock). In section B.2.2, I

consider the impact of a “second-period” coal shock occurring between period t + 1 and period

t + 2, and illustrate how the consequences of this second-period shock — in terms of the evolu-

tion of wages and population head counts — are more severe if the community experienced a

coal shock in the first period. This differential severity stems from the impact of shocks on the

composition of the population. In reducing the number of high types, first-period shocks alter the

path of firm growth, which magnifies the consequences of local productivity shocks in subsequent

periods.

B.2.1 First-period shocks

Let a shock to the coal industry occurring between period t and period t+1 affect local productivity

in the coal industry according to the following:

θc,t+1 = θc,t +∆θc,t (10)

4The γ parameter might be thought of as capturing the rate at which high types establish new firms in the non-coal
industry (hence, “entrepreneurship” rate).
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An adverse (negative) productivity shock implies that ∆ < 0. How does this coal shock influence

local wages and population sizes?

Proposition 1. Wages for low (WL) and high (WH ) types are increasing, the number of high types (NH )

is increasing, and the number of low types (NL) is decreasing linearly in ∆θc,t. A negative shock to

productivity in the coal industry between period t and t + 1 (∆ < 0) thus reduces wages, reduces the

number of high types, and increases the number of low types living in the affected community. The number

of non-coal firms Fd is also increasing in ∆θc,t, such that a community that experienced a negative shock

to θc will have fewer non-coal firms in subsequent periods than an identical community that experienced no

shock.

Proof. See Appendix C.3.

Proposition 1 describes the evolution of wages and population head counts with respect to a

coal shock occurring between period t and t+1. Such a shock decreases low- and high-type wages,

decreases the number of high-type workers, and increases the number of low-type workers. The

evolution of firms dictated by equation 9 implies that a lower number of high types (a lower value

of NH ) will produce a lower value of Fd, such that a shock that reduces the value of NH in period

t + 1 will lower the value of Fd in period t + 2. Note additionally that a suppressed value of θc,t

is not in and of itself relevant to the severity of θc,t-type shocks, as wages and population head

counts are linear with respect to coal shocks.

B.2.2 Second-period shocks

A second-period shock to the coal industry occurring between period t + 1 and t + 2 is defined

analogously to a first-period shock occurring between period t and t+ 1:

θc,t+2 = θc,t+1 +∆θc,t+1 (11)

Do the effects of a second-period coal shock depend on whether a community experienced a first-

period shock? To answer this question, consider two communities: Community j and Community

l. They are identical in period t. Between period t and period t+1, Community j suffers a negative

productivity shock to its coal industry. Between period t + 1 and period t + 2, both Community

j and Community l suffer coal shocks of identical magnitudes. How do the effects of the second-

period shock in Community j (which experienced a first-period shock) and Community l (which

did not) compare?
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Proposition 2. Wages for low (WL) and high (WH ) types increase, the number of high types (NH ) in-

creases, and the number of low types (NL) decreases by more in ∆θc,t+1 in a community which experienced

a shock in the preceding period than an otherwise identical community. A negative shock to productivity in

the coal industry between period t+ 1 and period t+ 2 (∆ < 0) thus has a larger impact — in terms of its

effect on local wages and population head counts — in Community j (which also experienced a first-period

shock) than Community l (which did not).

Proof. See Appendix C.3.

Proposition 2 indicates that the consequences of a coal shock will be more severe (i.e., larger

in magnitude) in places exposed to adverse shocks in preceding periods relative to places with

no history of coal shocks. This differential severity stems from the impact of the preceding (first-

period) shock on the number of high types, and thus the number of non-coal-industry firms, in

the affected community. Because Community j arrives at the more recent (second-period) coal

shock with fewer firms in the non-coal industry than an otherwise identical Community l, wages

and population head counts are more responsive to the shock. This differential severity does not

stem from differences in the level of productivity in the coal industry at the beginning of the period

(θc,t+1). Rather, it is explained by differences in the number of firms in the non-coal industry at the

time of the shock.

C Model expressions and proofs

Below are the primary mathematical expressions excluded in the main text. I first solve for low-

type wages and show that high-type wages can be written in terms of low-type wages. Next, I

outline the seven equations that characterize the static equilibrium. I then detail the components

of the central parameters NH , NL, WH , and WL, the partial derivatives of WL and NH with

respect to θc, and the cross-partials of WL and NH with respect to θc and Fd.
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C.1 Solving for wage

High-type wages (WH ) are equal to the efficiency parameter (ω) times low-type wages (WL), as

WH =
∂

∂nH
(−a(nL + ωnH)2 + θcb(n

L + ωnH))

= ω(−2a(nL + ωnH) + θdb)

= ω(
∂

∂nL
(−a(nL + ωnH)2 + θcb(n

L + ωnH)))

= ωWL.

Wage WL is given by solving for the wage at which everyone is hired. At wage WL for low

types and ωWL for high types, coal firms hire until:

WL =
∂

∂WL
(−a(nL + ωnH)2 + θcb(n

L + ωnH)) = −2a(nL + ωnH) + θcb

Rearranging this expression, each firm in the coal industry hires such that:

nL + ωnH =
1

2a
(θcb−WL)

Symmetrically, each firm in the non-coal industry hires such that:

nL + ωnH =
1

2a
(θdb−WL).

Aggregating across all firms:

NL + ωNH =
1

2a
(Fc(θcb−WL) + Fd(θdb−WL)),

where NL and NH represent the total population of low and high types in the local labor market,

respectively.

C.2 Characterizing the static equilibrium

The seven equations that characterize the seven equilibrium parameters (WL, WH , P , NL, NH ,

εH , and εL) are expressed below:

1. P = 1
α(W0 + εH − U

H
) + WH − W0 (High-type marginal utility is equal to his reservation
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utility.)

2. P = WL + εL − U
L (Low-type marginal utility is equal to his reservation utility.)

3. NH = H( MH−εH

MH−mH ) (The number of high-type workers is determined by the amenity cutoff

above which high-types stay in the coal community.)

4. NL = L( ML−εL

ML−mL ) (The number of low-type residents is determined by the amenity cutoff

above which low-types stay in the coal community.)

5. NL +NH = S (Housing prices are such that every unit of housing is occupied.)

6. NL + ωNH = 1
2a(Fc(θcb−WL) + Fd(θdb−WL) (Wages as derived earlier.)

7. WH = ωWL (Wages as derived earlier.)

The detailed expressions for NH , NL, WH , and WL are outlined below:

• NH : The number of high types in a local labor market is written NH = A/B, where:

A = H(−2aαLS(ω − 1) + FcL(−α(−bθcω + bθc +ML − U
L
+W0)

+MH − U
H
+W0) + FdL(−α(−bθdω + bθd +ML − U

L
+W0)

+MH − U
H
+W0) + αFcS(M

L −mL) + αFdS(M
L −mL))

and

B = 2aαHL(ω − 1)2 − (Fc + Fd)(αH(mL −ML) + L(mH −MH))

• NL: The number of low types in a local labor market is written NL = A/B, where:

A = L(−2aαHS(ω − 1)ω

+FcH(−α(−bθcω + bθc +ML − U
L
+W0) +MH − U

H
+W0)

+FdH(−α(−bθdω + bθd +ML − U
L
+W0) +MH − U

H
+W0)

+FcS(m
H −MH) + FdS(m

H −MH))

and

B = (Fc + Fd)(αH(mL −ML) + L(mH −MH))− 2aαHL(ω − 1)2
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• WH : High-type wages are written WH = A/B, where:

A = ω(−2a(HL(ω − 1)(−α(ML − U
L
+W0) +MH − U

H
+W0)

+αHSω(ML −mL) + LS(MH −mH))

−b(Fcθc + Fdθd)(αH(mL −ML) + L(mH −MH)))

and

B = 2aαHL(ω − 1)2 − (Fc + Fd)(αH(mL −ML) + L(mH −MH))

• WL: Low-type wages are written WL = A/B, where:

A = −2a(HL(ω − 1)(−α(ML − U
L
+W0) +MH − U

H
+W0)

+αHSω(ML −mL) + LS(MH −mH))

+b(Fcθc + Fdθd)(αH(mL −ML) + L(mH −MH))

and

B = 2aαHL(ω − 1)2 − (Fc + Fd)(αH(mL −ML) + L(mH −MH))

C.3 Proofs

C.3.1 Proof of Proposition 1

Proof. A negative shock to coal is realized as a decrease in θc between period t and t + 1 (∆ < 0).

Differentiating the primitive expressions with respect to θc shows that ∂NH

∂θc
> 0 and ∂WL

∂θc
> 0,

such that low-type wages and high-type population head counts decline with declines in coal

productivity. Because WH = ωWL, it follows that ∂WH

∂θc
= ω ∂WL

∂θc
, and therefore ∂WH

∂θc
> 0,. Further,

as NH +NL = S, it follows that ∂NL

∂θc
= −∂NH

∂θc
.

Thus, ∂NH

∂θc
> 0, ∂NL

∂θc
< 0, ∂WL

∂θc
> 0, and ∂WH

∂θc
> 0, indicating that a decrease in θc between

period t and t + 1 (∆ < 0) decreases NH , increases NL, and decreases WL and WH . That is, the

adverse shock reduces the number of high types, increases the number of low types, and reduces

both high- and low-type wages. The linearity of wages and population head counts with respect

to coal shocks is illustrated by ∂2NH

∂θ2c
= ∂2WL

∂θ2c
= 0. The full expressions for these derivatives and

cross-partials are in Appendices C.3.3 and C.3.4.
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C.3.2 Proof of Proposition 2

Proof. In period t + 1, there are only two primitives in which Community j and Community k

differ: θc and Fd. Both of these primitives are lower in Community j than Community k. The

relative severity of the effect of the shock in the two communities is determined by the relative

magnitude of ∂WL

∂θc
and ∂NH

∂θc
. As before, these relationships determine the corresponding partials

of WL and NL by the linear equations WH = ωWL and NL + NH = S. Because the second-

order derivatives with respect to θc are zero (shown in the proof to Proposition 1), the differences

in the relative severity are explained by the cross-partial ∂2

∂θc∂Fd
.5 Taking these derivatives and

examining the expressions shows that ∂2NH

∂θc∂Fd
< 0 and ∂2WL

∂θc∂Fd
< 0. By extension, ∂2NL

∂θc∂Fd
> 0 and

∂2WH

∂θc∂Fd
< 0. The full expressions for these derivatives and cross-partials are in Appendices C.3.3

and C.3.4.

C.3.3 Derivatives with respect to θc

• ∂WL

∂θc
= A/B, where:

A = bFc(αH(mL −ML) + L(mH −MH))

and

B = (Fc + Fd)(αH(mL −ML) + L(mH −MH))− 2aαHL(ω − 1)2

• ∂NH

∂θc
= A/B, where

A = −αbFcHL(ω − 1)

and

B = (Fc + Fd)(αH(mL −ML) + L(mH −MH))− 2aαHL(ω − 1)2

C.3.4 Cross-partials with respect to θc and Fd :

• ∂2WL

∂θc∂Fd
= A/B, where:

A = −bFc(αH(mL −ML) + L(mH −MH))2

5Proposition 1 indicates that a suppressed value of θc,t is not in and of itself relevant to the severity of θc,t-type
shocks.
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and

B =
(
(Fc + Fd)(αH(mL −ML) + L(mH −MH))− 2aαHL(ω − 1)2

)2
• ∂2NH

∂θc∂Fd
= A/B, where:

A = αbFcHL(ω − 1)(αH(mL −ML) + L(mH −MH))

and

B =
(
(Fc + Fd)(αH(mL −ML) + L(mH −MH))− 2aαHL(ω − 1)2

)2
D Indirect evidence of exclusion restriction assumption

The primary empirical approach leverages a county’s exposure to the coal shock by instrumenting

for changes in the coal share of the adult population with the coal share at the beginning of the

period. The assumption is that the initial coal share is exogenous to expected outcomes, only in-

fluencing subsequent changes in employment, population, and other outcomes via its relationship

with shocks to coal demand. While impossible to test for directly, one indirect test of this exclusion

restriction is to examine whether the instrument predicts outcome changes during a period of rel-

ative stability in demand for coal. That is, were there no legacy consequences of historical shocks,

the county coal share should predict changes in outcomes when coal is in decline, but not during

periods of relative stability. While demand for coal has fluctuated over the past several decades,

the industry enjoyed relatively steady demand in the period directly preceding the contemporary

coal shock. Figure D3 shows that electricity generation from coal was remarkably flat between

1997 and 2007, but then fell by about 40 percent in the decade that followed, just as natural gas

generation increased by a similar magnitude.

I exploit this relatively stable period of coal demand in one indirect test of the exclusion

restriction. Table D7 reports the relationship between Coal2007j and changes in outcome variables,

in both the period of declining coal demand (2007–2017) and the relatively stable decade leading

up to the contemporary analysis (1997–2007). Panel A (2007–2017) reflects the standard reduced-

form relationship between the instrument and outcomes of interest, while Panel B (1997–2007)

offers a falsification test between the instrument and outcomes that should not be influenced by

the 2007 coal share if this instrument were as good as randomly assigned. All regressions are

population-weighted and include controls for the share of the adult population with a college
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Figure D3: U.S. electricity generation by energy source

Notes: Figure based on data retrieved from the EIA. “Other” includes generation from nuclear, renewables, and
petroleum and other. Values are based on generation from power plants with at least 1-megawatt electric generat-
ing capacity.

degree, the share of the population that is foreign-born, the female share of the adult workforce

(ages 20–64), a dummy indicating any coal employment at the start of the period, and state fixed

effects. Odd-numbered columns control for 2007-level characteristics (based on the 2005–2009

ACS estimates) and weight by 2007 population. Even-numbered columns control for 2000-level

characteristics (based on the decennial Census) and weight by 1997 population.

The point estimates in Panel A of Table D7 indicate that the instrument strongly predicts

outcome changes during the period of declining national coal demand. A 1pp increase in the coal

share predicts a 1.7 percent decline in wage and salary employment, a 0.8 percent decline in the

population ages 20–64, a 0.5pp decline in the employment share of the adult population, a 2.7

percent decline in wages and salaries, and nearly a 1 percent decline in wages per employee over

the 2007–2017 period. While the 2007 coal share predicts pre-period declines in the working-age

adult population, it has much less predictive power over trends in other outcomes during the

placebo period from 1997 to 2007 (Panel B), a time when coal mining employment was relatively

stable in Appalachia. Indeed, it predicts a slight increase in the employment-population ratio

in the years prior to the contemporary coal shock. That counties with heavier coal shares were

experiencing waning population counts prior to the contemporary coal shock is consistent with
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Table D7: Reduced form and falsification tests

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
∆ln(emp) ∆ln(ages 20-64) ∆ emp:pop ratio ∆ln(wages) ∆ln(wages/emp)

Panel A: Contemporary coal shock (∆ 2007-2017)

Coal share, 2007 -1.73*** -1.75*** -0.76*** -0.78*** -0.52*** -0.51*** -2.66*** -2.69*** -0.93*** -0.94***
(0.30) (0.28) (0.20) (0.19) (0.17) (0.17) (0.51) (0.49) (0.25) (0.24)

Panel B: Placebo period (∆ 1997-2007)

Coal share, 2007 -0.26 -0.11 -0.67** -0.66*** 0.21* 0.28** -0.46 -0.29 -0.20 -0.18
(0.35) (0.27) (0.26) (0.21) (0.12) (0.11) (0.44) (0.37) (0.14) (0.14)

Controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Controls base year 2007 2000 2007 2000 2007 2000 2007 2000 2007 2000
State FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Observations 413 413 413 413 413 413 413 413 413 413

All regressions include state fixed effects and a dummy variable indicating whether the county had positive coal
employment at the beginning of the period. Robust standard errors are in parentheses. The coal share refers to the
coal mining share of the working-age adult population in 2007. Controls in even- (odd-) numbered columns include
the 2007- (2000-) level share of the population that is foreign-born, the female share of employment, and the share of
adults with a college degree. Regressions in even- (odd-) numbered columns are weighted by 2007 (1997) population.
Outcomes are based on estimates from the BEA Regional Economic Accounts. Outcomes in Panel A are defined over
the 2007–2017 period, while those in Panel B are defined over the 1997–2007 period.
*** p<0.01, ** p<0.05, * p<0.1

the persistent consequences of historical shocks on population mobility, but the increase in the

employment rate is inconsistent with a secular decline in economic activity. Still, one might be

concerned that the effect of the contemporary coal shock is biased upward by the legacy effects

of historical events. The conclusions are insensitive to controlling for lagged population changes,

controlling for lagged (e.g., 1980 level) coal shares, and matching coal counties to non-coal counties

based on population pre-trends.

E Adjustment to a single-period shock: Additional outcomes

Table E8 displays the baseline IV estimates of the effect of the 2007–2017 coal shock on the change

in (log) wages and salaries (column 1), wages and salaries per wage and salary employee (column

2), total personal income (column 3) and personal income per capita (column 4). All outcomes

are based on estimates produced by the BEA Regional Economic Accounts. The point estimate in

column 1 indicates that a 1-unit (1pp) increase in the coal shock reduces total wages and salaries

by nearly 5 percent, or about 50 percent more than the fall in total employment (3.24 percent).

Consistent with this, average wages and salaries (per wage and salary employee) fall by 1.74

percent. This could reflect both compositional shifts in the employed population, with the most
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productive or highest-paid employees exiting the local workforce, as well as declines in the wages

of incumbent employees. Without individual-level data, I am unable to distinguish between these

two forces, although other work using administrative tax data has shown that declines in demand

for coal produced large declines in individual earnings (Colmer et al., 2024; Rud et al., 2024).

Table E8: Earnings and income adjustment to coal shock, 2007–2017

(1) (2) (3) (4)
∆ln(wages &

salaries)
∆ln(wages &
salaries per
employee)

∆ln(personal
income)

∆ln(personal
income per

capita)

Coal shock, 2007–2017 -4.98*** -1.74*** -1.55** -0.56*
(1.06) (0.42) (0.61) (0.31)

State FE ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓ ✓
Observations 413 413 413 413

All regressions are weighted by initial (2007) county population and include state fixed effects and controls for the
initial share of the population that is foreign-born, the female share of employment, the share of adults with a college
degree, and a dummy variable indicating whether the county had positive coal employment at the beginning of the
period. Robust standard errors are in parentheses. The coal shock is defined as -1 times the change in the coal employ-
ment share of the adult population (ages 20–64). I instrument for the 2007–2017 coal shock with the coal share in 2007.
Outcome variables are defined over the 2007–2017 period and are retrieved from the BEA Regional Economic Accounts.
*** p<0.01, ** p<0.05, * p<0.1

At the same time, Table E8 shows that total personal income falls by only 1.55 percent (col-

umn 3), and personal income per capita falls by 0.56 percent (column 4), following a 1-unit (1pp)

increase in the coal shock. That total incomes fall by less than total wages suggests that non-

wage income becomes a more important component of total income. That is, households may rely

more on transfer payments, non-wage earnings, and other forms of income to buffer total income

losses. Again, I am unable to distinguish the extent to which declines in average earnings result

from mechanical changes in the population composition using the aggregated county-level data.

However, that things like transfer payments (e.g., SSDI) become a more important component of

total income would be consistent with other research demonstrating the responsiveness of trans-

fer receipt to economic conditions and labor demand shocks (Black et al., 2002, 2003; Autor and

Duggan, 2003; Autor et al., 2014; Hanson, 2022).

The evidence presented in Table E9 indicates that the average earnings losses documented

in Table E8 are unlikely to be driven entirely by compositional shifts in the population. It ex-

plores differential earnings consequences of the 2007–2017 coal shock by sex and educational at-
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tainment, where median earnings for full-time workers ages 25 and older are based on ACS 5-year

estimates.6 The outcome variable is defined as the change in the natural log of median earnings

for the sex-education category indicated. The point estimates indicate that less-educated men ex-

perience the largest declines in earnings, while the changes in earnings for other sex-education

categories are statistically indistinguishable from zero. A 1-unit increase in the coal shock yields

a 3.57 percent decline in earnings among men with less than a high school degree, a 2.4 percent

decline in earnings among men with exactly a high school degree, and a statistically imprecise

1.4 percent decline in earnings among men with a college degree. For these patterns to be driven

entirely by the mechanical effect of population composition changes, it would need to be the case

that only the highest wage male workers with lesser levels of education are leaving the local work-

force, but the estimates in Table 3 revealed that population responses were largest among better

educated male workers. That the largest (and only detectable) wage adjustments come from the

most immobile group of workers is instead consistent with Topel (1986), where positive produc-

tivity shocks generate wage gains for the least geographically mobile group of workers: those

who are older and less educated. It is also consistent with Borjas (2006), who demonstrates that

internal migration among native workers weakens the wage impact of immigrant in-migration.

Here, internal migration of more educated workers might mollify the adverse wage consequence

of local productivity shocks.

Table E10 reports the effect of the coal shock on employment in other industries based on

data from the QCEW.7 Examining the 1970s coal boom and subsequent 1980s coal bust, Black

et al. (2005a) find that the 1980s shock yielded declining employment and earnings in construc-

tion, services, and retail. Table E10 indicates that the contemporary coal shock does not have a

statistically distinguishable effect on employment in goods-producing industries (which include

construction) once natural resources and mining employment are omitted, but the direction and

magnitude of the coefficient implies potentially large negative spillovers on these industries.8

6The number of observations varies across columns, as the Census does not produce earnings estimates for certain
sex-education categories in counties with very small base populations.

7Employment is calculated by industry Super Sector in the QCEW High-Level dataset. More details on these
groupings, as well as their corresponding NAICS codes, can be found at https://www.bls.gov/cew/classifications/
industry/high-level-industries.htm. Industry-level employment counts are suppressed by the QCEW for confidential-
ity purposes in certain cases. I estimate the effect of the coal shock on the change in log industry employment for all
counties with non-missing values for employment counts in both 2007 and 2017. I omit the change in employment
in information and financial activities from Table E10, as both industries compose a relatively insubstantial fraction of
total county employment for most counties in the analysis.

8The employment total in column 2 is defined as all goods-producing employment less employment in natural
resources and mining, consisting of employment in construction and manufacturing.
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Table E9: Earnings change by sex and educational attainment, 2007–2017

(1) (2) (3) (4)
∆ln(median earnings), 2007–2017

All full-time
workers ages

25 +

Workers w/
less than high

school

Workers w/
HS degree

Workers w/
college degree

Panel A: ∆ln(median earnings), Male

Coal shock, 2007–2017 -2.26*** -3.57* -2.44*** -1.42
(0.68) (1.87) (0.58) (1.23)

State FE ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓ ✓
Observations 412 404 412 401

Panel B: ∆ln(median earnings), Female

Coal shock, 2007–2017 -0.05 2.29 -0.29 -1.14
(0.41) (1.84) (0.58) (1.21)

State FE ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓ ✓
Observations 412 378 411 403

All regressions are weighted by initial (2007) county population and include state fixed effects and controls for the 2007
share of the population that is foreign-born, the female share of employment, the share of adults with a college degree,
and a dummy variable indicating whether the county had positive coal employment at the beginning of the period.
Robust standard errors are in parentheses. The coal shock is defined as -1 times the change in the coal employment
share of the adult population (ages 20–64). I instrument for the 2007–2017 coal shock with the coal share in 2007.
Outcome variables describe the change in the natural log of median annual earnings by sex and educational attainment
for full-time workers ages 25 and older, based on estimates produced from the ACS 5-year surveys (2005–2009 and
2015–2019).
*** p<0.01, ** p<0.05, * p<0.1

The coal shock produces substantial negative spillover effects in some service-producing in-

dustries, particularly those more reliant on local demand. A 1-unit (1pp) increase in the coal shock

yields a 2.4 percent decline in ”trade, transportation, and utilities” (which includes both whole-

sale and retail trade) and a 1.6 percent decline in leisure and hospitality, indicating that shocks to

coal mining employment adversely affect employment opportunities in other sectors. This aligns

with research showing that industries more dependent on local demand are more vulnerable to

demand shocks in other local industries (Moretti, 2011; Aragón and Rud, 2013; Mian and Sufi,

2014). Conversely, demand for some other service-oriented industries, such as health services,

might be less elastic to local shocks. Indeed, the null effect on education and health might indicate

that demand for things like healthcare services is relatively insulated from the adverse spillover
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Table E10: Spillover effects of the 2007–2017 coal shock: Employment changes in other industries

(1) (2) (3) (4) (5) (6) (7)
Goods-producing ind Service-producing ind
All goods Non-NR All service TTU Prof. Ed & health LH

Coal shock, 07-17 -9.88*** -4.57 -1.43* -2.43** -2.51 0.25 -1.61**
(2.64) (2.90) (0.80) (0.97) (3.02) (0.74) (0.82)

Controls ✓ ✓ ✓ ✓ ✓ ✓ ✓
State FE ✓ ✓ ✓ ✓ ✓ ✓ ✓
Observations 406 406 410 413 391 409 407

All regressions are weighted by initial (2007) county population and include state fixed effects and controls for the
initial share of the population that is foreign-born, the female share of employment, the share of adults with a college
degree, and a dummy variable indicating whether the county had positive coal employment at the beginning of the
period. Robust standard errors are in parentheses. The coal shock is defined as -1 times the change in the coal em-
ployment share of the adult population (ages 20–64). I instrument for the 2007–2017 coal shock with the coal share in
2007. Outcome variables are defined over the 2007–2017 period and are retrieved from the QCEW. Non-NR refers to
employment in all goods-producing industries less employment in natural resources and mining (i.e., construction and
manufacturing). TTU refers to trade, transportation, and utilities, and prof. refers to professional and business services.
LH refers to leisure and hospitality.
*** p<0.01, ** p<0.05, * p<0.1

effects of local demand shifts in other industries.9 Broadly, these results suggest that adverse coal

shocks might trigger de-agglomeration forces in local economies, with potentially broader and

more lasting negative effects for exposed communities.

F Adjustment to a single-period shock: Robustness

Instrumenting for the contemporary coal shock (∆Coal2007-17j ) with the coal share in the initial pe-

riod (Coal2007j ) leverages variation in initial coal shares and an exogenous national, sectoral shock

(Goldsmith-Pinkham et al., 2020; Borusyak et al., 2022a). The exclusion restriction assumption

might be particularly strong in the context of Appalachia’s coal industry, as a central motivation

of this investigation is that some places that are highly coal-dependent in the contemporary period

might have been shaped by historical experiences in ways that affect their recovery from shocks.

In light of this, I consider several alternative instruments for ∆Coal2007-17j that are plausibly more

exogenous to expected outcomes in the contemporary period. All have relatively weaker first

stages than the instrument used in the primary analysis and thus yield slightly noisier estimates,

but the direction and magnitude of coefficients support the central findings.

9This is supported by anecdotal evidence that demand for health workers has increased in many commu-
nities hit hardest by declining coal employment. See, for example, https://www.nytimes.com/2019/09/14/us/
appalachia-coal-women-work-.html.
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First, I use the estimated county-level coal reserves per capita to instrument for the coal

shock. The intuition behind this approach is that a place’s comparative advantage in the coal in-

dustry depends upon its natural resource endowment. This endowment predates any economic

activity in a county, such that initial coal reserves only influence a place’s economic and population

trajectory by generating differential exposure to changes in demand for the resource. County-level

data on initial coal reserves (in millions of short tons) is available for only four states in the Ap-

palachian region (West Virginia, Kentucky, Ohio, and Pennsylvania).10 I limit the sample to the

193 Appalachian counties in these four states and I instrument for the 2007–2017 coal shock with

estimated (original) county-level coal reserves, divided by the total population at the beginning of

the period (2007).11 I use the original reserves rather than an estimation of remaining reserves both

because this measure is consistently estimated across the four states, and because this measure is

purged of a county’s history with coal mining, which could potentially influence expected out-

comes. This instrument will be valid if having large per-capita coal endowments is not predictive

of outcomes except through its influence on the change in the coal share of the population. Given

that the endowment of this resource substantially predates the empirical setting, it is plausible

that coal reserves provide an exogenous source of variation in exposure to the contemporary shift

in demand for coal.

The estimates produced when instrumenting for ∆Coal2007-17j with the initial coal reserves

per capita on this four-state sample are similar in magnitude to those from the baseline analysis,

as seen by comparing the coefficients represented by the blue circles and gray boxes in Figure F4,

which reflect the estimates from the baseline specification and those produced by instrumenting

for ∆Coal2007-17j with initial reserves per capita, respectively. Figure F4 also reports the estimates

when instrumenting for the contemporary coal shock with the coal reserves per capita using the

1980 population size as the base. These estimates are reflected by the red circles. The standard

errors are slightly larger when instrumenting for the coal shock with initial reserves per capita, as

the instrument itself has a weaker first stage than the initial coal share used in the primary analy-

sis.12 While the estimates are slightly less precisely estimated exploiting initial coal endowments

10These four states form the basis of the analysis in Black et al. (2002, 2003, 2005a), which use the value of coal reserves
as the exogenous source of variation when analyzing the 1970s coal boom and 1980s coal bust.

11Initial coal reserves are all estimates based on geological surveys, provided by various state agencies. Initial re-
serves in Ohio counties were retrieved from Sorrell and Spahr (2016a,b) and Wright and Erber (2018). Kentucky reserves
were retrieved from Association (2010), Pennsylvania reserves from Edmunds (1972), and West Virginia reserves from
West Virginia Office of Miners’ Health Safety and Training (2009).

12The first stage F-statistic when instrumenting for the 2007–2017 coal shock with the reserves per capita (in 2007) is
just over 10.
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as the driving source of variation, the coefficients produced using this strategy are quantitatively

and qualitatively similar to those in the main analysis.

Figure F4: Effect of contemporary coal shock: Alternative instruments

Notes: Figure reflects the coefficient on the 2007–2017 coal shock in different specifications described in the legend.
All regressions are weighted by population and include state fixed effects, initial (2007) county-level covariates, and a
dummy variable for having any coal employment in 2007. The 2007 coal share (baseline) specification instruments for
∆Coal2007-17

j with the 2007 coal share, Coal2007j . The 1980 coal share specification instruments for ∆Coal2007-17
j with

the 1980 coal share, Coal1980j . Reserves per capita specifications instrument for ∆Coal2007-17
j with initial coal reserves

per capita, where capita is defined by either the 2007 or 1980 population, indicated in the legend. The sample for
these two specifications includes only Appalachian counties in West Virginia, Kentucky, Ohio, and Pennsylvania. The
primary independent variable in the final two specifications is defined as the change in the coal employment share of
the (consistent) 2007 population, instrumented by the 2007 coal share Coal2007j or 1980 coal share Coal1980j as indicated
by the legend.

Given that the degree of coal mining in a county is largely dependent on the (immobile)

natural endowment of the resource, counties that were more dependent on coal mining in 2007

were also highly dependent on the industry in 1980. The 1980 coal mining employment share

could be a strong and (plausibly) more exogenous instrument for the change in the contemporary

coal share, given that the 2007 coal share is, in part, dictated by the experiences with the 1980

coal shock. While the coal share in 2007 is highly correlated with the coal share in 1980, the

latter provides a weak instrument for ∆Coal2007-17j (the first-stage F-statistic on Coal1980j is only 3).

Still, the coefficients produced using this instrument are largely similar to those from the baseline

specification. They are reflected by the orange diamonds in Figure F4. Ultimately, the relative

weakness of this instrument favors using the more contemporary coal share, but the results are
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broadly similar across specifications.

Finally, if the coal shock reduces local population sizes, this will influence the denominator

of the primary independent variable. If population declines are much larger than coal mining em-

ployment declines — perhaps due to negative spillovers into other industries — the coal employ-

ment share of the adult population may appear to increase despite declining coal employment. To

address this, I redefine the coal shock to purge the variable of any contemporaneous change in the

working-age-adult population over the 2007–2017 period. In the final two specifications in Figure

F4, the primary independent variable is defined as the change in the coal mining employment

share of the initial (2007) working-age adult population:

∆Coal2007-17j =
emp2017coal,j − emp2007coal,j

adult2007j

(12)

As before, I multiply this value by -1. The coefficients represented by the green triangles in Fig-

ure F4 are produced by instrumenting for ∆Coal2007-17j as defined in equation 12 with the 2007

coal share, Coal2007j . Those represented by the purple squares are produced by instrumenting for

∆Coal2007-17j as defined in equation 12 with the 1980 coal share, Coal1980j .

The conclusions drawn from these alternative specifications are largely similar to those drawn

from the baseline specification.13 This is true across a wider range of outcome variables than those

reflected in Figure F4. Using alternative instruments and definitions of the coal shock reveals

that counties adjust to declining demand for coal via reduced employment, reduced population

counts, and a range of other adjustment processes.

G Addressing spatial spillovers

Appalachian counties are small geographic units, and labor market shocks in one county may

have spillover effects into neighboring units. Neighboring counties may receive displaced coal

workers searching for new jobs, or they may experience reduced demand for local goods and ser-

vices resulting from the proximate shock. In this case, these observations may be contaminated by

the indirect effects of the coal shock. I consider these potential spillover effects in three ways. First,

I exclude from the analysis all counties that border coal counties, but do not have any coal employ-

ment themselves, based on coal employment counts in 2007. This approach omits these control

observations that may be contaminated by neighboring counties’ exposure to the coal shock. Sec-

13Defining the coal shock as the change in the coal share of employment produces similar results.
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ond, I construct a control variable that captures exposure to coal shocks in neighboring places

based on the commuting flows between counties. This control variable Commute2007j for county j

is defined as:

Commute2007j =
∑

j′∈adjacent

Coal employment2007
j′

× ςj′ (13)

where the weight on the 2007 coal employment in county j′, ςj′ , is defined as:

ςj′ =
Commuters2000

jj′

Commuters2000j

Thus, I multiply Coal employment2007
j′

, the 2007-level coal mining employment in an adjacent

county j
′
, by the share of total commuters in county j who commuted from j to j

′
in 2000 (ςj′ ) and

sum this value over all counties j
′

adjacent to county j.14

Third, I control for the spatial proximity of county j to other counties j′ ̸= j with high

exposure to coal shocks:

ProxCoal2007j =
∑
j′

ωjj′ × Coal2007
j′

(14)

Where ωjj′ is defined exactly as in equation 4 and Coal2007
j′

is the coal mining employment share

of the adult population (ages 20–64) in 2007 in other county j′. Thus, ProxCoal2007j reflects the

gravity-weighted coal share in all other counties. As discussed in Adão et al. (2019), the indirect

spillover effects of shocks in other labor markets likely attenuate the direct impact of local shocks

in a general equilibrium setting. Relatedly, Borusyak et al. (2022b) show that, because workers’

location decisions depend on economic conditions in both their origin and potential destination

locations, conventional migration regressions are misspecified by omitting shocks in relevant des-

tination labor markets. This control variable is meant to capture these considerations.

The first column of Table G11 reports the baseline IV coefficient estimates of the effect of the

2007–2017 coal shock on the change in total employment (Panel A), the change in the working-

age adult population (Panel B), and the employment-adult population ratio (Panel C). These are

identical to the estimates in column 4 of Table 2. Column 2 applies the same baseline specifica-

tion to the restricted sample, omitting adjacent, non-coal counties. These estimates are similar to

those from the baseline specification, indicating that the indirect effects in neighboring, non-coal

counties do not substantially affect the estimates. In column 3, I add to the baseline controls the

14County-to-county commuting flow data are estimates reported by the U.S. Census, based on the 2000 Census.
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Table G11: Employment and population adjustment to single-period coal shock, 2007–2017

(1) (2) (3) (4)

Panel A: ∆ln(wage and salary employment) 2007-2017
Coal shock, 2007–2017 -3.24*** -3.23*** -3.27*** -2.56***

(0.74) (0.77) (0.78) (0.50)

Panel B: ∆ln(population ages 20–64) 2007-2017
Coal shock, 2007–2017 -1.42** -1.52** -1.35** -0.78**

(0.63) (0.69) (0.63) (0.34)

Panel C: ∆ employment:population ratio, 2007-2017
Coal shock, 2007–2017 -0.97*** -0.89*** -1.09*** -1.01***

(0.23) (0.25) (0.24) (0.23)
State FE ✓ ✓ ✓ ✓
Baseline controls ✓ ✓ ✓ ✓
Control for Commute2007j ✓
Control for ProxCoal2007j ✓
Sample Baseline Restricted Baseline Baseline
Observations 413 300 413 413

All regressions are weighted by initial (2007) county population. Robust standard errors are in parentheses. Baseline
controls include the initial share of the population that is foreign-born, the female share of employment, the share of
adults with a college degree, and a dummy variable indicating whether the county had positive coal employment at
the beginning of the period. The variable Commute2007j captures commuting relationships to adjacent counties’ coal
employment. The variable ProxCoal2007j captures a distance-weighted measure of proximity to other coal counties.
The construction of these two variables is described in the text. The baseline sample is that used in the primary analysis.
Restricted removes all counties that border coal counties, but have no coal employment themselves. The coal shock is
defined as -1 times the change in the coal employment share of the adult population (ages 20–64). I instrument for the
coal shock with the coal share in 2007. Outcome variables are retrieved from the BEA Regional Economic Accounts.
*** p<0.01, ** p<0.05, * p<0.1

variable Commute2007j . Again, these parameters are similar to the baseline estimates. Column 4

controls for ProxCoal2007j . Consistent with Adão et al. (2019), accounting for a county’s exposure

to shocks in all relevant labor markets produces attenuated coefficient estimates for employment

and population changes. This attenuation likely occurs because the gravity-weighted proximity

measure captures spillover effects from all relevant counties, rather than being limited to those

that are directly adjacent. In contrast, controlling for adjacent commuting relationships only ac-

counts for direct neighbor-to-neighbor spillovers, which appear less consequential in driving the

estimated effects. However, the overall patterns remain intact, and the conclusions drawn from

the central analysis are robust to these spatial spillover adjustments.

28


	Introduction
	Data and economic setting
	Data on economic conditions and population characteristics
	Economic setting: Appalachia's coal country

	A model of coal shocks
	Setup
	First-period shock and selective migration
	Second-period shock

	Regional adjustment to coal shocks
	Adjustment to a single-period shock
	Empirical approach
	Employment and population adjustment to a single-period shock
	Selective migration and other adjustments

	Selective migration and a second-period shock
	Identification strategy
	Selective migration and adjustment to the 2007–2017 coal shock
	Selective migration and adjustment to shocks: Robustness to alternative specifications

	Mechanisms: The role of business formation

	Conclusion and discussion
	Appendix Figures and Tables
	A spatial equilibrium model of coal shocks
	Setup
	Labor supply and wages
	Evolution of firms

	Coal shocks and the evolution of economic activity
	First-period shocks
	Second-period shocks


	Model expressions and proofs
	Solving for wage
	Characterizing the static equilibrium
	Proofs
	Proof of Proposition 1
	Proof of Proposition 2
	Derivatives with respect to Lg
	Cross-partials with respect to Lg


	Indirect evidence of exclusion restriction assumption
	Adjustment to a single-period shock: Additional outcomes
	Adjustment to a single-period shock: Robustness
	Addressing spatial spillovers



