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I. Introduction 

 In April 2012 the Economic Research Service (ERS) and the Food and Nutrition 

Service (FNS) in the U.S. Department of Agriculture embarked on an ambitious new data 

collection enterprise known as the National Household Food Acquisition and Purchase 

Survey (FoodAPS). FoodAPS is innovative in that it is the first nationally representative 

household survey to collect comprehensive data on household food expenditures and 

acquisitions, including those obtained using benefits from food assistance programs. The 

survey includes data from 4,826 households, including Supplemental Nutrition 

Assistance Program (SNAP) households, low-income eligible households not 

participating in SNAP, and higher income households.  FoodAPS is specifically well 

suited to address factors affecting food demand, including access to food stores, as well 

as the pressing public health threat posed by food insecurity and how well America’s 

food and nutrition assistance programs serve to alleviate that threat.1 

The data in FoodAPS were collected for all sample household members over a 

seven-day period between April 2012 and January 2013. The total survey period for the 

typical household was nine days, with the initial and final days consisting of in-person 

interviews (training on the first visit and reviewing documents on the last visit), and the 

seven days in between consisting of recording food acquisitions and meals and snacks 

eaten supplemented by phone calls to the survey research firm (Mathematica Policy 

Research) on days 2, 5, and 7. The food acquired was delineated into food at home 

(FAH) and food away from home (FAFH), and detailed information on quantities and 

prices, product descriptions, and geographic location of the sample household was 

                                                           
1 Discussion papers of these research projects are available at http://www.ukcpr.org/research/discussion-
papers 
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recorded. The survey also collected information on non-food spending, the demographic 

composition of the household, income, food security, health status, diet and nutrition 

knowledge, program participation (e.g., in SNAP, National School Lunch Program), and 

food access such as distance to food stores and restaurants. FoodAPS survey data are 

linked with information created from a nationally representative geographic sample from 

Information Resources, Inc. (IRI) on the local food environment of the sampled 

households that contains information about the prices of food at retail outlets.  In 

addition, there is information from other sources associated with FoodAPS on the 

nutrient content of food acquisitions based on scanner barcodes; access to farmers’ 

market and food pantries; area-level socio-economic characteristics; and some food 

policy information, such as state and local tax policies. 

To foster new research utilizing this extensive data resource, ERS and FNS 

commissioned the University of Kentucky Center for Poverty Research and the 

University of Illinois to sponsor a competitive grants program. In response to the 2014 

Request for Proposals, 60 completed applications were submitted, and after a rigorous 

external review process, 12 were selected for funding. Final reports were submitted in the 

summer of 2016, and below we provide a summary of the research results. Appendix 1 

contains a complete listing of the final reports and electronic copies of the final reports 

can be found at http://www.ukcpr.org/research/food-assistance/foodaps . 

II. Household Food Behaviors and SNAP 

A. How do food prices across geographic space affect food insecurity and the 

sufficiency of SNAP benefits? 

SNAP is the cornerstone of the food assistance system in the United States, and 

http://www.ukcpr.org/research/food-assistance/foodaps
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the consequences and implications of participation in SNAP have been widely examined 

(Bartfeld et al. 2015). A large literature demonstrates that SNAP decreases food 

insecurity and improves health for recipients (Hoynes et al. 2016; Gregory et al. 2015; 

Hoynes and Schanzenbach 2016; Gundersen and Ziliak 2014, 2015).  SNAP benefits are 

based on an assessment of need that takes into account household size, income, 

adjustments to income, and the cost of a nutritious diet. While SNAP benefits are set 

nationally, local prices, household characteristics outside of benefit calculation, and the 

timing of benefits can potentially affect the behavior of recipients and the effectiveness of 

SNAP. However, data quality is often an issue that prevents researchers and policy 

makers from understanding what individuals receiving SNAP and those at risk for food 

insecurity purchase, the nutritional quality of purchases, and shopping habits.  

 The detailed FoodAPS data permit researchers to examine the sufficiency of 

SNAP benefits in achieving nutrition policy goals. SNAP benefits are designed to 

provide sufficient funds for households to adhere to the Thrifty Food Plan (TFP), a food 

plan constructed by the USDA that outlines a nutritious diet at minimal cost to 

households. For example, the TFP suggests a two parent family with two children aged 2-

5 should be able to afford a nutritious diet for $128.80 per week (Ziliak 2016). 

Heterogeneity of prices across geographic space may be important to the feasibility of 

meeting dietary needs through the TFP. These differences in food prices across the U.S. 

could generate substantial differences in the real value of SNAP benefits, since benefits 

are only indexed to regional food prices in Alaska and Hawaii. 

 In a study conducted for this project, Bronchetti et al. (2016) examine the 

adequacy of SNAP benefits in meeting the TFP while taking into account the regional 
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variation in food pricing. The authors calculate the percentage of SNAP recipients and 

SNAP-eligible households for whom SNAP benefits are adequate to purchase the TFP. 

They simulate potential SNAP benefits based on household income, family size, 

expenses, and composition. Results suggest that 20 to 30 percent of SNAP recipient 

households face TFP prices that are too high to be purchased with SNAP benefits plus 30 

percent of net income.   

They also find that, although many SNAP recipient households are struggling to 

afford the TFP, the proportion of SNAP recipients affording the TFP increases if the 

distance the household is assumed to shop in is expanded. For those households who 

cannot afford the TFP, average dollar shortfalls are around $150 per month. One 

interpretation of these results is that SNAP benefit levels should be more closely linked to 

local area food prices as is done in Alaska and Hawaii. 

 Regional price variation is not limited to food. Many studies (Berkowitz et al. 

2014; Bhattacharya et al. 2003) document that a substantial trade off exists among many 

low income households between necessities such as food, rent, medical care, and other 

basic household needs. Basu et al. (2016) examine how cost of living, inclusive of food, 

impacts the healthfulness of food acquisitions. They also examine if SNAP participation 

is associated with living in lower cost of living areas, and if SNAP recipients purchase 

more healthful food. 

 Using an endogenous treatment effects model, and estimating cost of living 

through Bureau of Economic Analysis and the Census Bureau regional price indices, the 

authors find that higher area-level cost of living is associated with less healthful food 

acquisition. The authors also found that SNAP recipients were no more likely to live in 
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low cost of living areas, nor were they more likely to purchase more healthful food. If 

SNAP recipients are unable to purchase the TFP, and are likely to live in high cost of 

living areas where nutritious diets are harder to obtain, directed increases in SNAP 

benefits may be worth considering. 

B. Do local food prices impact diet quality among SNAP participants and 

nonparticipants? 

Lyford et al. (2016) explore how SNAP beneficiaries navigate food consumption 

in an attempt to understand the impact of regional food price differences. The authors 

utilize the detailed geographic and consumption data present in FoodAPS to control for 

local market structure and the market for food items, as well as controlling for 

demographic characteristics. The authors also address the endogeneity of SNAP 

participation with an instrumental variables approach. They find that on average, 

although an index of food prices paid by SNAP recipients was 0.09 points lower than the 

index of non-participants, SNAP recipients are not systematically disadvantaged, and that 

budgeting plays a crucial role in the affordability of food for individuals receiving SNAP.  

 Chang et al. (2016) also note the importance of budgeting, examining how cost 

and financial literacy impact diet quality and sufficiency. Similar to Lyford, et al. (2016), 

they examine various measures of consumer competency, including how households 

handle bills, whether the household receives payday loans or cash advances, and whether 

or not the household employs store savings methods such as coupons or loyalty benefits. 

To identify the causal impact of SNAP on consumer competency, state policy and 

administrative indicators are used as instrumental variables for SNAP participation. 

 The authors find somewhat mixed results, with prices negatively associated with 
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financial management practices such as coupon use, using nutrition facts, and using a 

grocery list, but positively associated with loyalty programs and other store specific 

savings. However, SNAP participation improved financial management practices. These 

findings suggest that low income individuals struggle implementing many competent 

consumption strategies. 

 These results compliment those found in Lyford et al. (2016), who suggest that 

SNAP recipients are better at budgeting, that budgeting improves food consumption, and 

that more education could improve food choices. Chang et al. (2016) find that, while 

SNAP recipients are better able to employ competent consumer strategies, these 

strategies are far from ubiquitous. Thus, these results taken together suggest that broad 

financial education could play an important role in the effectiveness of the SNAP 

program in helping recipients afford plentiful and healthful food. Existing work through 

the USDA’s SNAP-Ed program has focused efforts in this budgeting and financial 

management, and these results, along with those in the recent randomized control trial in 

Indiana funded by UKCPR and FNS (Rivera et al. 2016), suggest that education in 

budgeting should continue, and perhaps be expanded. This information would allow 

SNAP recipients means to better afford a healthful diet by paying comparatively lower 

food prices. 

C. What is the importance of the SNAP benefit cycle and consumer competency 

for food consumption? 

 For SNAP beneficiaries, financial management is complicated by distribution 

rules. Not only do recipients have to make income stretch between pay periods, they also 

have to allot SNAP dollars across the benefit month. The benefit month is the period 
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between which benefits are distributed. For example, in Alaska, benefits are made 

available at the beginning of every month, while benefits in Kentucky are randomly 

distributed based on a household’s case number. Many households have a large spike in 

food consumption and expenditure when benefits arrive, only for this consumption to 

taper off at the end of the benefit month. Kuhn (2016) and Berning et al. (2016) examine 

the consequences and causes of these SNAP cycles. Kuhn (2016) finds strong evidence of 

this cycle, with expenditure decays of roughly 4% per day over the course of the benefit 

month, and a loss of up to 12 meals per month. However, Kuhn notes that the correlation 

between expenditure and consumption cycles is weaker than expected, and that children 

are insulated from these cycles (especially young children), due to parental oversight and 

food provided at school. Kuhn also notes that diet quality decreases over the benefit 

month, and that travel time to grocery stores is not predictive of more severe expenditure 

cycles. 

 Berning et al. (2016) examine two behavioral responses of SNAP participants 

associated with the SNAP benefit cycle—short run impatience and the degree of 

substitutability between SNAP dollars and cash. The authors find strong evidence of time 

inconsistent spending, with households spending much more on food the day that benefits 

are issued. The authors also find that spending falls significantly in the days following 

benefit distribution, similar to Kuhn (2016). Berning et al. also find that households 

purchase more healthful foods and that perishable foods and FAH in general decline over 

the benefit cycle. 

 The research by Seligman et al. (2012) suggests that this benefit cycle may be 

associated with diabetes and acute onset of hypoglycemia and hospital admissions. The 
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evidence suggests that the SNAP benefit may be inadequate to meet the needs across the 

month, which is likely tied to the TFP being too low (Caswell and Yaktine 2013; Ziliak 

2016).  

D. How does food access across geographic location influence prices and 

shopping habits? 

 Hillier et al. (2016) also examine the cyclicality of SNAP benefits, but in relation 

to the spatial distribution of stores and the nutritional content of meals, analyzing the role 

of these mechanisms in determining food shopping decisions in time and space. The 

authors first determine a choice set of stores where households could shop.  They find 

that SNAP participants’ store choices are influenced by demographic characteristics and, 

in the main, this leads them to shop at large supermarkets. They find, similar to studies 

mentioned above, that the nutritional quality of food at home choices decreases over the 

benefit cycle, and that purchases at natural/gourmet and limited assortment stores were 

more healthful than those purchased at large supermarkets, perhaps reflecting the 

different set of products available at those stores. However, the authors also find that the 

health quality of purchases by SNAP households were not significantly different than 

those by households which were not SNAP eligible, but that purchases by SNAP eligible 

non-recipients were of lower health quality than those of SNAP recipient households. 

These results show how diet quality is a complex web of benefits, timing, location, and 

individual preferences, but they offer some insight on the relationship between store 

choice and SNAP policy.  

IV: The Role of the Local Food Environment on Food Purchases 

A. What is the role of the local food environment and food prices on food 



Food APS Research at UKCPR – Page 10 
 

security? 

When investigating the impact of food environments, it is crucial to account for 

household characteristics as well as the local prices that each household faces.  Few data 

sources have the necessary links between local food retailers and pricing, household food 

purchases, food insecurity, and their spatial relation. With the FoodAPS, however, 

researchers can more fully investigate the role of food deserts and food prices via the 

merging of FoodAPS with information created from IRI data. Evidence from the 

FoodAPS suggests that the conventional wisdom surrounding food deserts (areas with 

low food access) may be misguided and that local prices play a larger role than proximity 

to food retailers.   

In a study conducted for this project, Downing and Laraia (2016) use the 

FoodAPS to examine the impact of food prices and food deserts on food security and 

health. The average household in the dataset lives between 3-5 miles from the nearest 

supermarket. Food insecure households live slightly closer to supermarkets (2.5 miles) 

and shop closer to home (3.8 miles) than food secure households. They find that living in 

a food desert is not associated with being food insecure, which is consistent with, e.g. 

Bitler and Haider (2011). Food deserts may not have large impacts on health as well. 

They find that there is no difference in obesity by food environment.  

Using the FoodAPS, Allard and Ruggles (2016) indicate that many population 

sub-groups identified in the literature as being vulnerable to low food resource access, 

such as households headed by a black person and low-income households, actually have 

greater or comparable spatial access to several different types of food resources compared 

to less vulnerable population sub-groups. Over 90 percent of poor and non-poor 
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households report using supermarkets or superstores as their primary food shopping 

venue. Additionally, black and Hispanic households are much closer to the nearest SNAP 

supermarket or superstore than white households. Black and Hispanic households also are 

within 1 mile of about 0.5 more supermarkets and superstores than white households. 

There is also no significant difference in supermarket access between SNAP participants 

and eligible non-participants. However, urban households are much closer to SNAP 

retailers and concentrations of SNAP retailers than households in suburban and rural 

areas. So while there are not differences in food access by income or participation, there 

are significant differences between urban and suburban/rural locations. 

Given the consistent findings of minimal differences in food access, perhaps more 

important are the local food prices faced by each household.  As discussed above, large 

heterogeneity in food prices across the U.S. can generate substantial differences in the 

real value of SNAP benefits and their potential impact. Though food deserts themselves 

are not associated with food insecurity, akin to the findings of Gregory and Coleman-

Jensen (2013), Downing and Laraia (2016) find that food insecurity is linked with 

presence of high cost supermarkets, but not with the absence of supermarkets, in high 

poverty neighborhoods.  Indeed, they find that 13 percent of food insecure households 

lived in high poverty areas with higher than average supermarket prices, compared with 

only 5 percent of food secure households. Additionally, households who select their 

supermarket based on low prices compared to other reasons such as variety or produce 

selection are 5-7% more likely to be food insecure. 

B. How does food retail environment affect food purchases? 

A unique feature of FoodAPS is that it allows research to construct a precise food 
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environment for every individual in the dataset, for both FAH and FAFH purchases. This 

depth, combined with the rich geographic information on the precise distance between 

retail food outlets visited and each household's residence, as well the number and types of 

outlets in proximity to each household, allows researchers to construct detailed pictures 

of household’s retail environments. Previous studies have needed to rely on broad area-

based measures of access instead of individual level measures.  

Gustafson and Allen (2016) use a fractional multinomial logit analysis to examine 

all FAH and FAFH venues a household faces and find that close proximity to superstores 

or supermarkets increases the share of weekly food purchases made there, and that car 

access increases the share of FAFH purchases and decreases the share of FAH purchases 

other than superstores or supermarket. 

The structural model of Taylor and Villas-Boas (2016) is able to translate these 

preferences into a consumer’s willingness to pay (WTP). That is, how much would a 

consumer be willing to pay per week for a particular food environment. Using a discrete 

choice model, Taylor and Villas-Boas find that households have the highest willingness 

to pay for superstores, supermarkets, and fast food, at approximately $15 per week in 

distance traveled. To put this in perspective, a WTP of $15 represents 9.6% of the weekly 

food expenditures of the average household in FoodAPS. Equating these estimates to 

dollars per mile, FoodAPS households are willing to pay $2-$5 per week to have a 

superstore 1 mile closer to their home, $1-$4 per week for a fast food restaurant to be 1 

mile closer to home, and $1-$6 per week for a supermarket to be 1 mile closer to home. 

Furthermore, across heterogeneous household characteristics, the households in this 

sample have low WTP for farmers’ markets to be closer to home. This implies that 
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simply building farmers markets will not induce households to shop there.  

Both studies find that SNAP participation plays a role in food venue choice. 

SNAP participation increases the share of purchases at superstores and decreases the 

share spent at FAFH venues, on average. SNAP households are also willing to pay more 

than non-SNAP households to have FAH outlets closer to their home. Regarding 

household income, Taylor and Villas-Boas argue that low-income households would be 

receptive to policymakers promoting the building of certain types of food stores (i.e., 

superstores) over other types (i.e., convenience and smaller grocery stores).  Additionally, 

households either without car access and not living in a food desert, living in a rural area, 

or that state closeness-to-home as their reason for primary store choice, receive greater 

disutility from distance than their counterparts. Taken together, these findings suggest 

that food-access incentives potentially should be designed to fit the sociodemographic 

composition of each identified low-income, low-access neighborhood in question. 

C. How does food environment affect health? 

If policy makers want to encourage the building of supermarkets and supercenters 

in low-access neighborhoods, it is also important to consider what food the households 

will purchase and what the health consequences may be. Gustafson and Allen (2016) 

examine this question specifically and find that shopping at these types of stores 

influences what is purchased. At supermarkets, SNAP households tend to purchase lower 

calorie beverages and fruits and vegetables. Whereas at supercenters, SNAP households 

purchase healthier food items, but they also purchase sugar‐sweetened beverages, snacks, 

and higher calorie items.   

Bowen et al. (2016) expand on this result by providing a more comprehensive 



Food APS Research at UKCPR – Page 14 
 

measure of healthy eating by using a Healthy Eating Index that incorporates dollars spent 

and amount of food (measured by weight) in several categories: fruit, vegetables, snacks, 

and sweetened beverages. They employ multilevel models with neighborhood and state 

effects to analyze the associations between household characteristics, neighborhood 

characteristics, regional attributes, and dietary quality. The authors find that the number 

of large food stores in the neighborhood is significantly and positively associated with 

dietary quality, while other neighborhood characteristics such as neighborhood 

deprivation is not significantly associated with dietary quality. Importantly, Bowen et al. 

also incorporate household finances and regional prices to give a more complete picture 

of determinants of a household’s food purchases. Their model shows that at the 

household level, financial condition and home ownership are significantly and positively 

related to dietary quality; highlighting the importance of financial security, while U.S. 

citizenship status and living in a rural area were negatively associated with dietary 

quality. Interestingly, their measure of a regional food price index was not significant 

while the neighborhood random effects were significant, stressing the importance of 

using local food prices as done by Downing and Laraia (2016).   
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Abstract 

Whether Supplemental Nutrition Assistance Program (SNAP) benefits are adequate to 

provide food security for eligible households is an important and timely policy question. While 

the nominal value of SNAP benefits is fixed across states (except for Hawaii and Alaska), 

variation in food prices across geographic areas is dramatic, and the real value of SNAP benefits 

varies widely across the U.S.  Our research provides new evidence on geographic variation in the 

adequacy of SNAP benefits to purchase the Thrifty Food Plan (TFP). Using multiple methods to 

estimate the cost of the Thrifty Food Plan (TFP) faced by households across the nation, and 

several measures of the SNAP benefits available to them, we consistently find that a substantial 

fraction of SNAP-recipient households receive benefits that are insufficient to purchase the TFP.  

Our primary estimates indicate that SNAP benefits (plus 30 percent of income) are insufficient 

for approximately 20-30 percent of households to purchase the TFP. Sufficiency rates increase 

monotonically as we expand the distance within which the household is assumed to be able to 

shop.  For households who are unable to afford the TFP, average dollar shortfalls between the 

cost of the TFP and SNAP benefits (plus 30 percent of income) are often as large as $150 per 

month. When shoppers are assumed to be able to purchase the TFP at the minimum-cost store in 

the area, SNAP benefits are sufficient for over 90 percent of households.  However, this 

assumption seems unlikely to hold for many SNAP households. 
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Executive summary 

 

Objectives 

Our research provides new evidence on the adequacy of SNAP benefits, taking into 

account geographic variation in local food prices across the U.S.  Because SNAP benefits are not 

indexed to local food prices (except for in Alaska and Hawaii), the real value of SNAP benefits 

differs widely.  In some areas, SNAP benefits may be insufficient to purchase the Thrifty Food 

Plan (TFP), the USDA’s low-cost, nutritious food plan that is the basis for legislated SNAP 

benefit levels.  Using multiple measures of the local TFP cost faced by households in FoodAPS, 

we calculate the percentage of SNAP recipients and SNAP-eligible households for whom SNAP 

benefits are adequate to purchase the TFP.   

Methods 

Using FoodAPS and FoodAPS-GC data, along with food basket costs estimated by 

Gundersen et al. from store-level IRI data to approximate the TFP, we calculate the respondent’s 

cost of food in several ways:  

 basket cost at the primary store at which the respondent reports shopping 

 basket cost at the alternate store at which the respondent reports shopping 

 the mean, median, and minimum basket cost in the respondent’s county  

 the mean, median, and minimum basket cost at stores within an X-mile radius of the 

respondent’s census block centroid (where X = 20, 10, 5, 3.4, 2.5) 

 the mean, median, and minimum basket cost at the X stores nearest to the respondent’s 

census block centroid (where X = 5, 2, 1)  
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Our primary estimates compute the fraction of SNAP-recipient households for whom self-

reported SNAP benefits received (plus 30 percent of income) are sufficient to purchase the TFP.  

For SNAP-eligible households, we compute sufficiency rates by simulating the potential SNAP 

benefit to which the household is entitled, using information on household income, expenses, 

family size and composition. We also calculate the average dollar shortfall (i.e., the gap between 

TFP cost and benefits plus 30 percent of income) for households for whom SNAP is insufficient.  

Results and policy implications 

Our evidence indicates that geographical variation in food prices may render SNAP 

benefit levels inadequate for a sizeable fraction of households to purchase the TFP, despite the 

fact that this bundle of foods provides the basis for legislated SNAP benefit levels.  Using fairly 

conservative assumptions about where households are able to shop, our estimates suggest this 

fraction may be on the order of 20-30 percent.  An open question is whether SNAP benefits are 

also overly generous in areas with relatively low food prices.  If so, one interpretation of our 

results would be that SNAP benefit levels should be more directly indexed to local food prices.  
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Introduction 

 The Supplemental Nutritional Assistance Program (SNAP, or formerly, Food Stamps), is one 

of the largest forms of government assistance in the United States.  Both caseloads and program 

costs peaked at the time of our study (2012-2013), with more than 1 in every 7 Americans 

participating the program, and annual program costs exceeded 80 billion dollars (Bartfeld et al. 

2015). A substantial body of literature has demonstrated that SNAP significantly reduces food 

insecurity in recipient households (Yen et al. 2008; Nord and Golla 2009; Mykerezi and Mills 

2010), and leads to short- and long-run improvements in outcomes like health, education, and 

economic self-sufficiency, particularly for those who receive benefits as children.1 Despite the 

program’s successes, food insecurity remains a problem for more than one-fifth of households 

with children in the U.S.  Even among SNAP-recipient households, the rate of food insecurity 

remains quite high, at over fifty percent (Coleman-Jensen et al., 2014). 

Dramatic differences in local food prices across the country can generate wide variation in 

the real value of SNAP benefits, since benefit levels are legislated nationally and are not 

separately indexed to the regional price of food (except for in Alaska and Hawaii).  Data from 

the Quarterly Food at Home Price Database (QFAHPD) show that regional food prices vary from 

70-90 percent of the national average at the low end to 120-140 percent at the high end (Todd et 

al. 2010; Todd, Leibtag, and Penberthy 2011).  Not surprisingly, households in market areas with 

higher food prices are more likely to be food insecure (Gregory and Coleman-Jensen, 2013). 

This study explores the degree to which SNAP benefits are adequate for households to 

                                                           
1 See Hoynes and Schanzenbach (2015) for a review of SNAP and other food assistance programs and 

their impacts.    
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purchase the Thrifty Food Plan (TFP).  The TFP is a food plan constructed by the USDA to 

represent a nutritious diet at a minimal cost and is used as the basis for legislated maximum 

SNAP benefit levels.  Whether SNAP benefits are sufficient to purchase the TFP in a SNAP 

recipient’s area will depend on the food prices the individual faces.  Using new data from the 

FoodAPS and FoodAPS-Geography Component data sets, we are able to account for variation in 

local food prices at a much tighter geographical level than has been possible in prior research.  

Rather than rely on regional food price indices, we use multiple methods to estimate the cost of 

the TFP faced by SNAP-recipient households and SNAP-eligible households at the stores where 

they are likely able to shop, as well as at the stores where they report shopping.     

We then use information on households’ SNAP benefits to determine the fraction of 

households for whom benefits (plus 30 percent of income) are sufficient to purchase the TFP.2  

For households for whom benefits are found to be insufficient, we also compute the average 

dollar shortfall between the cost of the TFP and SNAP benefits (plus 30 percent of income).  

Methods and data 

Our samples include (1) FoodAPS respondent households who report receiving SNAP 

benefits in the past month3 (“SNAP recipients”), and (2) FoodAPS households who are simulated 

to be eligible for SNAP, according to models constructed by USDA-ERS (“SNAP eligibles”).  

The first goal of our research is to link each respondent in these samples to information on what 

                                                           
2 For SNAP recipients, we use both self-reported benefit levels plus 30 percent of income (separately for 

gross and net income, calculated using family size and potential deductions) and maximum benefit 

entitlements (calculated using only family size).  For SNAP-eligible households who do not take up 

benefits, we use simulated levels of benefits, as well as maximum benefit for family size. 
3 See section 2.3.4 of the data documentation at 

http://www.ers.usda.gov/datafiles/FoodAPS_National_Household_Food_Acquisition_and_Purchase_Sur

vey/In_person_interviews/Initialcodebook.pdf, May 26, 2016 version, as the SNAP recipient variable 

(SNAPNOWHH) includes a correction for matching self-reports to state administrative data. 

http://www.ers.usda.gov/datafiles/FoodAPS_National_Household_Food_Acquisition_and_Purchase_Survey/In_person_interviews/Initialcodebook.pdf
http://www.ers.usda.gov/datafiles/FoodAPS_National_Household_Food_Acquisition_and_Purchase_Survey/In_person_interviews/Initialcodebook.pdf
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it would cost the household to purchase the TFP from local stores.  We use store-level “basket 

prices,” calculated by the teams at the University of Illinois and the University of Florida from 

IRI scanner data, and link these to FoodAPS respondents using the FoodAPS-GC data. 

Throughout, we use the Illinois/Florida team’s variable, low_basket_price as our measure of TFP 

cost.4  In some ways, this is a conservative approach, in that it assumes that within each TFP 

food category, SNAP households purchase low-priced items. Additionally, the basket prices may 

include “variety bias” in that stores that do not sell particular items included in the Thrifty Food 

Plan do not include a price estimate for that item, thus under-estimating the true cost of the TFP 

at that store. To the extent this is true, it would bias our estimates towards finding high rates of 

SNAP sufficiency. 

We create multiple measures of TFP cost faced by the respondent, each of which involve 

different assumptions about how and where respondents shop.  Specifically, we analyze the 

adequacy of SNAP benefits to purchase the TFP, using the following measures of TFP cost: 

 basket cost at the primary store at which the respondent reports shopping 

 basket cost at the alternate store at which the respondent reports shopping 

 the average of the basket costs at the primary and alternate store 

 the mean, median, and minimum basket cost in the respondent’s county  

                                                           
4 The basket price data specifically does not refer to its basket prices as the “Thrifty Food Plan.” The 

prices are calculated using all items in a food category from a store, including high-price items and thus 

may not be representative of the purchases made by low-income SNAP households. However, the 

Illinois/Florida team has constructed two TFP-cost variables, basket_price and low_basket_price.  The 

first takes the median price-per-pound for each TFP category, multiples that price by the quantity (in 

pounds) prescribed for the TFP, and sums across TFP categories.  The latter makes the same calculation, 

but calculates the median price-per-pound only among items in the lowest quintile of prices for that TFP 

category.  We employ the latter measure throughout our analysis, both because the assumption that SNAP 

households buy low-priced items seems reasonable, and because it would tend to bias us away from 

finding SNAP benefits to be insufficient to purchase the TFP. 
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 the mean, median, and minimum basket cost at stores within an X-mile radius of the 

respondent’s census block centroid (where X = 20, 10, 5, 3.4, 2.5) 

 the mean, median, and minimum basket cost at the X stores nearest to the respondent’s 

census block centroid (where X = 5, 2, 1)  

Once we have estimated the cost of the TFP for each respondent using the several definitions 

above, we compare these to the household’s resources, using two different measures of the 

resources available for purchasing food:  (1) SNAP benefits plus 30 percent of net income, and 

(2) Maximum legislated SNAP benefits for household size.5  Sufficiency rates are calculated 

simply as the fraction of households for which the measure of resources exceeds the TFP cost 

measure, given the household’s size.    

We use 30 percent of income because SNAP benefit amounts are designed with the 

assumption that recipient households spend 30 percent of their income on food.  Additionally, 

SNAP benefits are calculated by subtracting 30 percent of net income from the maximum 

legislated benefit, where net income is calculated by adjusting gross income according to 

deductions for costs associated with housing, earnings, dependent care, medical expenses, child 

support payments, and other transfer program deductions. We use household-level and person-

level data to estimate the amount of these deductions and impute the household’s net income. 

Given the statutory definition of benefit levels, these two estimates would be identical with 

perfect reporting, but in practice they are not. 

After determining the fraction of SNAP households for whom SNAP benefits (plus 30 

                                                           
5 For completeness, sufficiency levels (as well as dollar amount of the shortfall) have also been calculated 

using 30% of gross income in lieu of net income. Results are available upon request. Sufficiency rates are 

higher using gross income, though this is more than households are expected to contribute under current 

law. 
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percent of income) are insufficient to purchase the TFP, we present a measure of the extent of 

insufficiency for these households.  Specifically, we compute the average dollar shortfall 

between the cost of the TFP and the household’s benefits (plus 30 percent of income).  Finally, 

we compare the average characteristics of households for whom SNAP is and is not sufficient to 

purchase the TFP. 

Results 

For the purposes of this report, we have condensed our main results into three tables.  Table 1 

displays SNAP sufficiency rates for SNAP-recipient and SNAP-eligible households for different 

measures of the TFP cost faced by the household.  Sufficiency rates are somewhat low for 

households to purchase the TFP at the stores at which they report shopping.  SNAP benefits 

allow 63-76 percent of households to afford the TFP at their primary stores (i.e., the store at 

which they report doing the most shopping). Households could do slightly better purchasing the 

TFP at their alternate store or the store nearest their census block centroid, with sufficiency rates 

around 70-80 percent and 69-78 percent, respectively.  We note that these estimates ought to be 

viewed cautiously, as the sample sizes decrease substantially when we employ these TFP cost 

measures.  This is because, for example, of the 1444 FoodAPS households who receive SNAP 

benefits, only 719 of them list a primary store that is also observed in the IRI data from which 

TFP cost measures are constructed. 

On the other hand, essentially all FoodAPS respondent households are able to be linked to a 

store in their counties, so we view the estimates that rely on county-level TFP-cost measures as 

fairly robust.  It is reassuring that these sufficiency rate estimates are of similar magnitude to the 

others we calculate.  These estimates indicate that SNAP benefits are likely to be insufficient for 
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about 20 to 30 percent of relevant households to purchase the TFP.  When we examine SNAP 

sufficiency rates by varying the distance within which we assume assuming that households can 

shop to purchase the TFP, sufficiency rates are of similar magnitudes and monotonically increase 

with the distance the household is assumed to be able to travel to shop.  For example, assuming 

households face the mean TFP cost within a 3.4-mile radius of their census block centroid (the 

mean distance households report traveling to shop), we find that SNAP is sufficient for 63 to 75 

percent of recipient households to purchase the TFP.  When that radius is extended to 20 miles, 

sufficiency rates for recipient households range from 71 to 78 percent.  

Sufficiency rates are, of course, highest when we allow shoppers to purchase the TFP at the 

minimum-cost store within a given distance.  While sufficiency rates often exceed 90 percent 

when shoppers are assumed to purchase the TFP at the lowest-cost store in their area, we note 

that it is unlikely that most shoppers are actually able to identify and travel to such a store.6  

Finally, comparing sufficiency rates based on maximum SNAP benefit levels for households 

SNAP-recipient and SNAP-eligible households, we find that sufficiency rates are somewhat 

lower among SNAP-eligibles.  A puzzling result is that the difference in sufficiency rates 

between net income and maximum benefits seems to be larger for eligible households than for 

recipient households. It is hard to know whether this is due to a characteristic of eligible 

households, or is merely an artifact of the simulation of benefits and eligibility. 

 Next, Table 2 contains estimates of the average dollar shortfall for both recipient and eligible 

households for whom SNAP is found to be insufficient. This is calculated using the difference 

                                                           
6 Also recall that we are already imposing the assumption that within any given store, shoppers purchase 

TFP items with prices in the lowest quintile of prices for that TFP category. 
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between the benefits plus (30 percent of) income and the cost of the TFP, or between maximum 

SNAP benefits and the cost of the TFP.7  We discussed previously that the sufficiency rates 

exhibit largely the expected pattern of decreasing as the shopping region gets smaller and smaller 

around the household. The size of the gaps sometimes exhibit a similar pattern, though the rule 

holds much less tightly. This is not surprising given that the size of the gap is an average only for 

the households who cannot afford the TFP (i.e., excluding households with surplus benefits or 

exactly equal to TFP cost), and the number of these households changes with each calculation.  

For example, when we compute TFP cost as the mean among stores within certain mile radii, the 

average gap (using SNAP plus 30 percent of net income) goes from $159 at 20 miles to $153 at 

3.4 miles, but then back down to $155 for a 2.5-mile radius. (As expected, the number of 

households for whom there is a gap decreases monotonically from 318 to 292.)  Using maximum 

benefits yields a different story: the average dollar shortfall estimates are much smaller, and 

bounce around between $34 and $40.  Shopping at the minimum-cost store within radii exhibits a 

monotonic increase in the size of the dollar shortfall, from $84 in a 20-mile radius to $103 in a 

2.5-mile radius (using SNAP plus 30 percent of net income). 

One pattern that does seem to hold strongly is that gaps for eligible household are 

significantly lower than for recipient households, especially when using SNAP plus net income 

as opposed to maximum benefits. While recipient households have gaps in the range of $150 

using net income, eligible households have gaps less than half that size. This could be a result of 

using a simulated measure of SNAP benefits, however. When comparing gaps using maximum 

                                                           
7 These gaps, in addition to the sufficiency rates shown previously, are estimated using the nationally 

representative survey design, but the large majority of mean estimates of gaps contain singleton 

observations within strata, so standard errors cannot be calculated.  
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benefits across the board, recipient and eligible households for whom SNAP is insufficient to 

afford the TFP have rather similar average dollar shortfalls. 

 While the absolute dollar amounts we have calculated may be of importance to policy 

makers, the size of these gaps relative to household's income and benefits is likely what is 

important to the households themselves.  For the sake of illustration, consider SNAP-recipient 

households who cannot afford the TFP at mean area prices and face an average dollar shortfall of 

around $150.  These households generally receive $200 to $250 in SNAP benefits per month, 

and report earned income of $800 to $1200 and total income of $1400 to $2100. Thus, the 

shortfalls are greater than half of the amount of benefits received, or over 10% of earned income 

and perhaps 5-10% of total income. 

Lastly, Table 3 compares the characteristics of recipient and eligible households, across 

households for whom SNAP benefits are sufficient versus insufficient to purchase the TFP. Not 

surprisingly, SNAP-recipient households with benefits insufficient to purchase the TFP are 

significantly more likely to live in high food price areas and more likely to reside in metropolitan 

areas.  In the case of SNAP-eligible households, they are also more likely to be low food security 

households, and appear to have larger families (p=0.11).  Households with insufficient benefits 

are generally no more likely to have earned income, face trouble paying bills, contain elderly 

family members, or reside in specific census regions.  

Discussion and conclusions 

This study provides new descriptive evidence on the adequacy of SNAP benefits to purchase 

a low-cost, nutritious diet as specified by the Thrifty Food Plan, which is the basis for legislated 

SNAP benefit levels.  Acknowledging that a given amount of SNAP benefits will buy less food 

in areas with high food prices, we estimate the fraction of SNAP households that are able to 
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purchase the TFP at local prices. Using newly available FoodAPS data to answer this question, 

we account for geographic variation in local food prices in much finer detail than has previously 

been possible.   

At present we use the cost of the food basket ignoring the specific week in which the basket 

cost was calculated and the week in which the respondent was surveyed. We are also only able to 

link respondents to basket prices from stores in the IRI data, which in some cases makes for 

small sample sizes. Further work with the local basket price data may provide additional insights 

and change our estimates slightly, especially for estimates based on proximity to census block 

group centroid.  

Our main findings indicate that a substantial share (on the order of 20 to 30 percent) of 

SNAP-recipient households face TFP prices that are too high to be purchased with SNAP 

benefits plus 30 percent of income. Sufficiency rates increase monotonically as we expand the 

distance within which the household is assumed to be able to shop.  For households who are 

unable to afford the TFP, average dollar shortfalls between the cost of the TFP and SNAP 

benefits (plus 30 percent of income) are often as large as $150 per month.   

On the other hand, when shoppers are assumed to be able to purchase the TFP at the 

minimum-cost store in a 20-mile radius, SNAP benefits are sufficient for nearly all recipient 

households to do so.  Whether it is reasonable to assume that households are able to identify and 

travel to the minimum TFP-cost store in their areas is an open question. 

A related question that we have not yet explored is whether SNAP benefits are also overly 

generous in areas with relatively low food prices.  If so, one interpretation of our results would 

be that SNAP benefit levels should be more directly indexed to local food prices.  Even without 
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directly tying benefit levels to local food prices, policy makers could better adjust SNAP benefits 

for local food prices by increasing the generosity of existing deductions for costs associated with 

housing, earnings, child care, and medical care, all of which are likely to correlate positively 

with local food price.
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SNAP plus Simulated SNAP plus
TFP Cost Calculation 0.30*Net Income Benefit 0.30*Net Income Benefit

Primary Store (N=719, 1220) 0.76 0.63 0.91 0.57

Alternate Store (N=549, 850) 0.80 0.70 0.92 0.65

Avg. of Primary and Alternate (N=981, 1641) 0.77 0.69 0.92 0.63

Nearest store (N=853, 1313) 0.78 0.69 0.92 0.62

Mean

County (N=1431) 0.77 0.76 0.97 0.67

20‐mile radius (N=1325, 2221) 0.78 0.71 0.91 0.68

10‐mile radius (N=1275, 2140) 0.78 0.71 0.92 0.67

5‐mile radius (N=1186, 1990) 0.76 0.67 0.90 0.60

3.4‐mile radius (N=1140, 1920) 0.75 0.63 0.89 0.58

2.5 mile radius (N=1094, 1841) 0.75 0.58 0.88 0.54

5 nearest stores (N=1265, 2101) 0.74 0.62 0.90 0.59

2 nearest stores (N=1069, 1777) 0.76 0.64 0.90 0.58

Median

County (N=1431) 0.79 0.74 0.98 0.70

20‐mile radius (N=1325, 2221) 0.77 0.64 0.91 0.64

10‐mile radius (N=1275, 2140) 0.76 0.65 0.91 0.61

5‐mile radius (N=1186, 1990) 0.75 0.64 0.90 0.56

3.4‐mile radius (N=1140, 1920) 0.75 0.65 0.90 0.58

2.5 mile radius (N=1094, 1841) 0.75 0.61 0.89 0.54

5 nearest stores (N=1265, 2101) 0.76 0.64 0.90 0.60

2 nearest stores (N=1069, 1777) ‐‐ ‐‐ ‐‐ ‐‐

Minimum

County (N=1431) 0.94 1.00 1.00 0.71

20‐mile radius (N=1325, 2221) 0.95 1.00 1.00 1.00

10‐mile radius (N=1275, 2140) 0.94 0.99 0.99 1.00

5‐mile radius (N=1186, 1990) 0.92 0.99 0.99 0.99

3.4‐mile radius (N=1140, 1920) 0.91 0.99 0.99 0.99

2.5 mile radius (N=1094, 1841) 0.89 0.99 0.99 0.98

5 nearest stores (N=1265, 2101) 0.89 0.97 0.98 0.95

2 nearest stores (N=1069, 1777) 0.86 0.92 0.97 0.88

Note: Table contains sufficiency rate for SNAP benefits to purchase TFP for SNAP‐recipient and SNAP‐eligible households. 
Benefits are self‐reported for SNAP‐recipient households.  Benefits are imputed for SNAP‐eligibles using using gross and net 
income and maximum benefit for family size. All estimates are population weighted.

Table 1
Sufficiency Rates of SNAP to Purchase the Thrifty Food Plan (TFP)

SNAP Recipient Households SNAP Eligible Households
SNAP Max SNAP Maximum
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No Yes p‐value No Yes p‐value

Family Size 2.78 2.64 0.41 2.52 2.21 0.11

Household has earned income 0.50 0.53 0.60 0.60 0.55 0.20

Household has elderly 0.30 0.27 0.40 0.38 0.37 0.83

Nonmetro area 0.03 0.17 0.01 0.03 0.17 0.02

Metro area 0.97 0.83 0.01 0.97 0.83 0.02

High food security household 0.34 0.32 0.50 0.45 0.50 0.45

Marginal food security household 0.25 0.21 0.25 0.23 0.19 0.14

Low food security household 0.24 0.26 0.59 0.21 0.16 0.08

Very low food security household 0.18 0.21 0.39 0.11 0.16 0.02

Trouble paying bills 0.30 0.28 0.49 0.18 0.17 0.83

High price area 0.88 0.00 0.00 0.90 0.00 0.00

Northeast 0.22 0.09 0.25 0.29 0.09 0.13

Midwest 0.24 0.34 0.33 0.16 0.35 0.05

South 0.33 0.43 0.25 0.32 0.42 0.34

West 0.21 0.14 0.49 0.22 0.14 0.40

Note: Table contains characteristics of households by SNAP sufficiency and a p‐value of the test of the difference, separately 
for SNAP recipients and SNAP eligible HH.  Benefits are all calculated using maximum benefit for family size.  Eligibility is 
estimated using model 4.  All estimates are population weighted.

Table 3
Average Characteristics of Households by SNAP Sufficiency

SNAP Recipient Households SNAP Eligible Households
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Abstract 
We tested the hypothesis that high costs of living, such as from high housing rents, 

reduce the healthfulness of food acquisitions. Using the National Household Food Acquisition 

and Purchase Survey (2012-13), we examined the relationships between cost of living and food 

acquisition patterns among both SNAP participants and non-participants (N = 5,414 individuals 

from households participating in SNAP, 3,863 individuals from non-participating households 

<185% of the federal poverty threshold, and 5,036 individuals from non-participating households 

>185% of the federal poverty threshold). Indices for cost of living included county-level 

Regional Price Parities for major classes of expenditures and the geographic adjustment to the 

Supplemental Poverty Measure, which is based on rent prices. We regressed the cost of living 

indices against measures of food acquisitions per person per day in each of several standard food 

categories, controlling for individual-, household-, and county-level characteristics. Using 

endogenous treatment effects models to potentially address unmeasured confounders influencing 

both the propensity to live in high-cost areas and patterns of food acquisition, we observed that 

higher area-level costs of living were associated with less healthy food acquisitions, including 

significantly fewer acquisitions of vegetables, fruits, and whole grains, and significantly greater 

acquisitions of refined grains, fats and oils, and added sugars. Overall, living in a high-cost area 

was associated with an 11% reduction in the Healthy Eating Index—a composite nutritional 

index previously associated with obesity, type II diabetes, and all-cause mortality. Additionally, 

we found that SNAP participation was associated with a significantly improvement in the 

healthfulness of food acquisitions among persons living in high-cost counties.  
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Executive Summary 

A recent Institute of Medicine report raised the question of whether Supplemental 

Nutrition Assistance Program (SNAP) benefits should be adjusted for geographic variations in 

the cost of living, including variations in the cost of food, to promote nutrition among low-

income Americans (1). Substantial existing literature in the fields of sociology, economics, and 

epidemiology has highlighted the trade-offs that low-income Americans face when attempting to 

pay for foods, such as having to sacrifice food budgets to pay for heating bills or medical care 

costs (2, 3).  

Here, we sought to test the following three key hypotheses relating the cost of living to 

the healthfulness of food acquisitions: (i) first, a higher area-level cost of living is associated 

with less healthy food acquisitions (which we define as lower Healthy Eating Index [HEI] 

scores, particularly from lower acquisition of fruits and vegetables and higher acquisition of 

refined grains and added sugars); (ii) second, SNAP participation is associated with living in a 

lower-cost area after accounting for other observed and unobserved covariates related to both 

SNAP and area of living (because the value of a SNAP dollar would be more in a lower-cost 

area, thus incentivizing enrollment); and (iii) third, any association between SNAP participation 

and the healthfulness of food acquisitions (i.e., HEI scores) is moderated by area-level cost of 

living (i.e., SNAP would have differential benefits to nutrition among areas with different costs 

of living).   

To test these hypotheses, we utilized data from the National Household Food Acquisition 

and Purchase Survey (2012-13; N = 5,414 SNAP participants, 3,863 SNAP-eligible non-

participants <185% of the federal poverty threshold, and 5,036 ineligible non-participants 
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>185% of the federal poverty threshold), which we linked to data on the cost of living computed 

by the Bureau of Economic Analysis (Regional Price Parities for major classes of expenditures) 

and by the U.S. Census Bureau (geographic adjustments to the Supplemental Poverty Measure). 

These indices of cost of living were chosen because they are routinely updated and therefore 

theoretically available to agencies that wish to regularly adjust benefit allotments from safety net 

programs for area cost of living; we studied these cost indices at the county-level, as the county 

area typically includes the primary food store of purchasing for most FoodAPS participants (4), 

unlike smaller areas of analysis, and has readily available social and economic covariate statistics 

that capture important area-level variations in food availability, unlike larger areas of analysis.  

Because there are potentially several unobserved or unmeasured confounders that may 

relate to SNAP participation, the propensity to live in a higher- or lower-cost area, and the 

healthfulness of food acquisitions, we used endogenous treatment effects models to test our 

hypotheses. These models utilize a control function approach to minimize the influence of 

endogeneity on estimates of the effects of an exposure on an outcome, such as the effect of living 

in a high-cost area on the HEI score.  

We found evidence consistent with our first hypothesis—that higher area-level cost of 

living was associated with less healthy food acquisitions. We defined a high cost of living area as 

being more than one standard deviation above the mean cost measured by either a regional price 

parity or the geographic adjustment to the Supplemental Poverty Measure. We found that living 

in a high-cost of living area was associated with significantly fewer acquisitions of vegetables, 

fruits, and whole grains, and was associated with significantly greater acquisitions of refined 

grains, dairy products, protein, fats and oils, and added sugars. This finding was observed no 
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matter which metric we chose for the area-level cost of living: overall regional price parity, 

rent/housing cost regional price parity, food regional price parity, regional price parities for 

goods or for services, or the geographic adjustment to the Supplemental Poverty Measure. 

Having controlled for individual-level factors such as education level, household-level factors 

such as income, and county-level factors such as food availability, the estimated effect of living 

in a high-cost county reduced the overall HEI score by approximately 11%. Clinically-speaking, 

this observed decrease in HEI is larger than those associated with a significantly increased risk of 

cardiovascular disease, type II diabetes, and all-cause mortality. Hence, we would expect such 

effects to be meaningful to public health.  

Importantly, we observed that the cost of living metric for food was not necessarily the 

most predictive of changes in the healthfulness of food acquisitions, perhaps because significant 

expenditures in other domains of life greatly influence the food budget. For the overall 

nutritional metric of HEI score, higher rent costs were more strongly associated with reduced 

healthiness of food acquisitions than higher food indices. This is an important result for 

policymakers who may need to choose metric of overall cost of living rather than only food costs 

when considering whether SNAP benefits should be adjusted for local-area cost of living. 

Our further subgroup analyses examining the relationships between area-level cost of 

living and food acquisitions revealed that low-income (<185% of the federal poverty threshold) 

SNAP non-participants were more sensitive to overall cost of living metrics than SNAP 

participants net of other individual-, household- and county-level covariates, consistent with the 

idea that SNAP participation itself buffers the negative impact of high living costs on nutrition. 

In our analytical sample, low-income non-participants had lower income than SNAP 
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participants, contrary to the idea that eligible non-participants are those who would typically 

receive the least SNAP benefits. This indicates that encouraging SNAP participation among 

eligible non-participants may be particularly beneficial to buffering low-income populations 

from negative nutritional effects of living in high-cost areas. 

We rejected our second hypothesis that SNAP would be associated with living in a lower-

cost area. Rather, receiving SNAP was associated with a significantly increased probability of 

living in a high-cost area. One theory is that SNAP participation, by increasing economic 

mobility, may permit low-income households to live in environments where they would 

otherwise be “priced out”. Alternatively, the association may be indicative of reverse causality: 

that living in a high-cost area induces eligible populations to enroll in SNAP because the 

additional SNAP dollars are vital to survival.  

In testing our third hypotheses, we found that SNAP was associated with no significant 

on the healthfulness of food acquisitions in lower-cost areas, because increased fruit and 

vegetable acquisitions and lower refined grain acquisitions attributable to SNAP participation 

were counterbalanced by increased acquisitions of fats and oils as well as added sugars. Overall, 

SNAP increased calories but did not disproportionately increase “unhealthy” calories; hence, 

SNAP had a statistically-neutral impact on HEI scores in lower-cost areas. By contrast, while 

individuals had a worse dietary profile in higher-cost areas, as discussed above, SNAP was 

associated with improved nutrition in such areas—permitting greater acquisitions of vegetables 

and fewer refined grains, with fewer adverse compensation from increased fat and oil or added 

sugar acquisitions. One theory to explain these findings may be that in a higher-cost 

environment, SNAP dollars are used disproportionately to assist households in acquiring those 
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foods that are most out of reach due to high perceived or real prices. This finding may also be a 

commentary on the nature of the food acquisition environment in lower-cost counties; if lower-

cost counties indeed have environments saturated with less-healthy foods, as suggested in the 

public health literature, SNAP participation may have limited effects on the healthfulness of food 

acquisitions because the unhealthy food environment overwhelms any potentially beneficial 

effects of SNAP. 

Our findings do not necessarily imply that a cost of living adjustment using currently 

available county-level cost of living metrics would improve the healthfulness of food 

acquisitions among SNAP participants currently living in lower-cost areas. However, our 

findings imply that SNAP participation is associated with living in a higher-cost area, and that 

SNAP participation is associated with improved nutrition in those areas. If SNAP participation is 

associated with living in higher-cost areas because SNAP increases economic mobility, then 

additional benefits might accrue to low-income populations given a cost-of-living adjustment. 

The existing sociology literature suggests that higher-cost areas that are typically lower in 

poverty may have substantial health benefits for low-income individuals who move to such 

areas. However, if SNAP benefits are reduced by cost of living adjustments among those 

populations living in lower-cost areas, it is possible that SNAP participation would be 

discouraged, or that SNAP would no longer have a neutral association with nutrition, but have 

rather a negative association, especially, if such benefits become disproportionately used on fats 

and oils or added sugars. A direct experiment or pilot study involving cost-adjusted SNAP 

benefits would help shed light on the effects of benefit modification on living costs and healthy 

food acquisitions.  
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Introduction 

Food insecurity among low-income Americans has been associated with poor nutrition, 

an increased risk of major nutrition-related chronic diseases, and poor clinical outcomes for 

patients with chronic diseases such as hypertension and type II diabetes (5–8). It is believed that 

low-income Americans faced with food insecurity often engage in economic trade-offs—

sacrificing their food budgets to pay for major living expenditures, such as rent or other housing 

costs, or medical bills (2,3). Potentially as a result of such trade-offs, foods purchased by low-

income Americans tend to be of lower nutrition value, in part because perceived or real prices of 

healthier food items such as fruits and vegetables are often higher than those of calorie-dense, 

nutrient-poor food items, which primarily contain refined grains and added sugars (9). 

Furthermore, in the context of rising economic inequality, many low-income Americans live in 

areas where neighborhood living costs are driven higher by inflated housing and food prices, 

even as real wages have lagged behind (10). As a result, neighborhood-level cost of living has 

increased for many low-income American households (particularly as housing costs have 

increased as a proportion of income (11)) potentially putting further pressure on food budgets 

among the lowest-income households (12).  

Extensive prior studies have associated local-area food availability and food costs with 

poor nutrition and nutrition-related health outcomes (for recent systematic reviews of this very 

large literature, see (13,14)). To assist in improving nutrition among the food insecure, the 

nation’s largest nutritional assistance program—the Supplemental Nutrition Assistance Program 

(SNAP)—currently provides assistance to nearly 1 in 7 Americans (15). SNAP has been 

extensively studied for its effects on nutritional purchasing and nutrition-related health outcomes, 
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with variable results. Some highly publicized prior research studies have associated SNAP 

participation with obesity and poor nutritional metrics (16,17), although these findings have not 

been consistently robust to alternative statistical specifications—particularly when unmeasured 

confounders (i.e., unobserved factors that may be correlated to both SNAP participation and poor 

nutrition) are considered (18,19). Area-level cost of living is among one of the key correlates of 

food insecurity for which data have been previously very limited, and to our knowledge the 

relationships between overall area-level cost of living, SNAP participation, and the healthfulness 

of food acquisitions have not been studied.  

The relationships between these factors are of particular interest because SNAP benefits 

are currently set based on a national estimate of the cost of living (rather than local-area costs). 

SNAP benefits are calculated by subtracting from a maximum monthly benefit, which is based 

on household size and fixed across the contiguous 48 states and the District of Columbia (while 

set to slightly higher levels in Alaska and Hawaii), from which 30% of net income is subtracted 

to determine an individual participant’s benefit (20). The maximum monthly benefit is given by 

the cost of the Thrifty Food Plan (TFP), which is a model-based estimate of the average national 

cost of a market basket of low-cost foods that would permit participants to achieve some 

components of national dietary guidelines on a limited budget. Net income is based on gross 

income (most private income and some transfer income) minus deductions based on national 

thresholds for major living costs including official child support payments, a standard deduction 

based on household size, a high-cost shelter deduction, and an out-of-pocket medical cost 

deduction for the elderly and disabled. Some prior adjustments to SNAP benefits have occurred, 

as legislation in 1988 increased the TFP by 3% to reflect time-lags in how quickly the national 
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cost of living adjustment was implemented between its calculation and its reflection in actual 

payments to beneficiaries; the 3% increase was later eliminated (21). More recently, as part of 

the post-recession American Recovery and Reinvestment Act of 2009, a 13.6% increase was 

added to the TFP for most households, which expired in 2013 (22). To our knowledge, studies of 

the 1988 adjustment on food security or nutritional outcomes are unavailable, but a study of the 

more recent 2009 increase reported that “the food security of low-income households (those with 

incomes in the eligible range for SNAP) improved from 2008 to 2009, and a substantial share of 

that improvement may be due to the increase in SNAP benefits implemented under ARRA” (23). 

Early studies of this change suggest that Medicaid costs in Massachusetts reduced during the 

ARRA stimulus (24), potentially as fewer low-income households experienced the complications 

of chronic disease associated with food insecurity (e.g., hypoglycemia among people with 

diabetes (25)).  

 In considering the relationships between cost of living and SNAP benefits, it is 

noteworthy to understand prior assumptions and data availability concerning living costs. The 

maximum SNAP benefit is adjusted each year in October based on Consumer Price Indices 

(CPIs) for 29 food categories included in the TFP that have a CPI for each age- and sex-group in 

the country (26). To disaggregate costs of living or food to local areas would require further sub-

national data. Yet, the Bureau of Labor Statistics that produces CPIs does not provide an official 

CPI measure or measures for the TFP for different areas of the country at a sufficient scale. 

Monthly CPIs are available for only three large metro areas, bimonthly CPIs for 14 metro areas, 

semiannual CPIs for 26 metro areas, and CPIs for 362 metropolitan statistical areas have annual 

data (27). Hence large areas of the contiguous U.S. states may substantially differ in their costs 
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of living, or at least in food costs, to warrant a nationally-based cost input to the TFP, but CPI 

data area unavailable for them. This dilemma was addressed when the U.S. Department of 

Agriculture produced the Quarterly Food-at-home Price Database in 2011, which provided 

retrospective estimates of prices in 26 metropolitan and 9 nonmetropolitan areas from 1999. The 

Quarterly Food-at-home Price Database required extensive matching and reconstruction of 

variables from corporate databases obtained from consumer purchasers (e.g., the Nielsen 

Homescan Data) to translate prices into standard comparable quantities, forbidding the effort 

from becoming a routine annual exercise from which to adjust the TFP (28). We discuss this 

limitation and a potential strategy to overcome it below, where we discuss the recent availability 

of Regional Price Parity (RPP) statistics from the Bureau of Economic Analysis. 

Nevertheless, the Quarterly Food-at-home Price Database and its underlying Nielsen 

Homescan Data do reveal substantial geographic variations in food prices across the nation, as 

detailed in several papers from the USDA’s Economic Research Service (29–31). One study by 

Todd and colleagues found that although healthy foods were not universally more expensive than 

less healthy foods, there was great variation in healthy food prices across the country (30). For 

example, whole grains were almost always more expensive than refined grains across the 

country; but the price variation ranged from 23% higher in San Francisco to >60% higher in 

nonmetropolitan Pennsylvania and New York. Similarly, fresh and frozen dark green vegetables 

were more expensive than starchy vegetables across the country, but prices varied from 20% 

higher to 80% higher. Furthermore, Gregory and Coleman-Jensen observed that the variations in 

food price related to variations in food security, such that one standard deviation increase in food 

prices was associated with a 5.0% increase in the prevalence of adult food insecurity (32).  
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These variations are unlikely to be sufficiently accounted for by the existing TFP 

formula. Prior studies in Boston and Philadelphia suggest that the TFP is unlikely to provide 

sufficient benefits to meet the intended nutritional standards in some urban areas. For example, a 

study in 2008 based on surveys of TFP-based food lists reported that a family of four receiving 

its maximum SNAP benefit would require an additional $2,520 in metropolitan Boston and 

$3,165 in metropolitan Philadelphia each year to purchase foods that meet the TFP’s nutrition 

goals; these quantities are approximately 40% to 50% greater than the maximum annual benefit 

as of 2008 (33). Notably, many of the TFP food items (16-38%) were also unavailable at 

surveyed stores.  

Despite the fact that the national standard for cost of living adjustment may not account 

for such food price differences and food availability differences, there are some implicit area-

level adjustments in the SNAP benefit formula. Two major deductions available to working 

SNAP participants include a 20% deduction of earnings from gross income, which implicitly 

accounts for wage variation across local labor markets (34), and a dependent care deduction 

which permits direct costs of dependent care including transportation and copayments for fees to 

be deducted, implicitly accounting for childcare cost variations across geographic areas (35). For 

the elderly and disabled, out-of-pocket medical cost deductions may additionally alter the impact 

of regional medical spending variations (36). The deduction for child support payments may 

account for state differences in child support awards (37). Finally, the inclusion of income from 

other safety net programs (such as Temporary Assistance for Needy Families, or TANF) may 

adjust benefits in the opposite direction, by reducing the size of the SNAP benefit. Because 

TANF is larger in higher-cost states (e.g., California, New York), adjustment for TANF benefits 
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may effectively “tax” SNAP benefits for those living in high-cost states.   

In reviewing this information, an Institute of Medicine Panel assembled in 2013 to assess 

the adequacy of SNAP benefits concluded: “Because most of the geographic differences in cost 

of living in the SNAP benefit formula are implicit rather than explicit, the question arises of 

whether making the adjustment more direct would facilitate definition of the benefit’s 

adequacy…The challenge of implementing geographic cost-of-living adjustments is that at 

present, BLS [the Bureau of Labor Statistics] does not produce a regional price index…adjusting 

the maximum benefit geographically for differences in cost of living (or even food) is likely to 

be infeasible until further progress is made on regional price indices” (1).  

Since the publication of the Institute of Medicine panel report, regional price indices have 

been produced and disseminated by the Bureau of Economic Analysis (BEA) and the U.S. 

Census, to assist in meeting the challenge of defining small area-level cost of living indices that 

can be routinely updated to adjust benefit formulas such as the TFP. The BEA has constructed 

regional price parities (RPPs), which are price indices measuring the price level differences 

across regions for a given time period by dividing the average price of goods or services in an 

area (typically a metropolitan statistical area, county, or state) by the national average price 

across all areas (38,39). The national average is set to a value of 100 such that an area’s RPP can 

be interpreted as a percent of the national average, e.g., all goods and services in New York State 

are 14.1% higher than the national average, so New York State has an RPP of 114.1. To derive 

the RPP index, the BEA obtained price and expenditure levels of individual goods and services 

in 16 expenditure classes (apparel, rents, and a goods class and a services class in each of the 

categories of: education, food, housing excluding rents, medical, recreation, transportation, and 
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other), which are further subdivided into strata (e.g., “major appliances”, under “goods”) and 

elementary level items (e.g., “refrigerators and freezers”, under “major appliances”), and clusters 

(e.g., “refrigerators”, under “refrigerators and freezers”). The prices for rents are obtained from 

the American Community Survey, while the prices for other goods and services are estimated 

from expanded BLS data obtained from product sellers, as is done to construct CPIs. The 

individual price observations (~1 million observations per year) include hundreds of consumer 

goods and services, often including multiple quotes for the same product from multiple sellers. 

The geometric average of the prices for each type of good, specific to outlet type and unique 

product, is then taken and linked to expenditure weights designed to reflect the distribution of 

personal consumption expenditures in a geographic area (40). Expenditures for rents account for 

the largest weighted share of expenditures (~43% of total expenditures), and variation in rents 

are greater than that of any other expenditure class nationally. The data are then allocated to 

counties, such that the RPP methodology implicitly ignores within-county variations in price; for 

goods and services other than rents, the methodology effectively ignores variations across 

counties within a BLS index area from which BLS consumer purchasing datasets are not further 

disaggregated (e.g., RPPs in Jefferson county (WV), in Prince George’s county (MD), and in 

Alexandria City (VA), are effectively assumed to be the same as the average in the entire 

Washington-DC-MD-VA-WV area, because this region is a single BLS area). Finally, the data 

are subjected to hedonic regressions, which attempt to account for variations in characteristics of 

goods and services provided, including differences in packaging, unit size, and type of outlet 

from which they are sold, to assemble an aggregate index of cost in each item stratum. Hedonic 

regressions take into account consumer preference variations by area (e.g., apples may be a 
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preferred fruit in one county, and oranges in another, so food regional price parities will account 

for variations in fruit preferences by location, rather than only comparing apple prices across all 

areas). An outlier analysis is performed to exclude extreme values, and missing data are imputed 

in some locations with limited input data. Estimation details have been extensively catalogued 

previously (38,39). 

 While the RPPs produced by the BEA have been newly constructed, the U.S. Census 

Bureau had previously assembled another metric of area cost of living: the geographic 

adjustment to the Supplemental Poverty Measure (41). In 1990, Congress appropriated a budget 

for an independent scientific study of the measurement and data for a poverty measure, with 

which the National Academy of Sciences established the Panel on Poverty and Family 

Assistance (42). Though the Panel released a report in 1995 discussing the need for a new 

measure to supplement the official poverty measure and account for a broad array of challenges 

faced by households in poverty, it was not until 2010 that the Interagency Technical Working 

Group on Developing a Supplemental Poverty Measure provided further details sufficient to 

incorporate a new measure into the Current Population Survey (CPS) to both produce a 

Supplemental Poverty Measure that captures a broad array of improvements to the poverty 

measure, including geographic adjustment of poverty thresholds for cost of living (43). The latter 

improvements are based on geographic differences in rental costs in the American Community 

Survey (ACS). The ACS now provides sufficient information on differences in rental prices 

across geographic areas, based on 5-year estimates of median gross rents for two-bedroom 

apartments with complete kitchen and plumbing facilities. Hence, this “geographic adjustment to 

the Supplemental Poverty Measure” is less comprehensive than the BEA’s RPPs and is primarily 
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reliant on housing costs, which are generally the largest expenditure for low-income households 

(11). Separate medians are estimated for each of 271 metropolitan statistical areas large enough 

to be identified on the public-use version of the CPS data file. For each state, a median is 

estimated for all nonmetropolitan areas and for a combination of all smaller metropolitan areas, 

producing 385 adjustment factors (41).  

 Given the availability of both RPPs and the geographic adjustment to the Supplemental 

Poverty Measure, we sought to test three key hypotheses relating the cost of living to the 

healthfulness of food acquisitions. Our first hypothesis was that a higher area-level cost of living 

would be associated with less healthy food acquisitions (which we define as lower Healthy 

Eating Index-2010 [HEI] scores, particularly from lower acquisition of fruits and vegetables and 

higher acquisition of refined grains and added sugars). The rationale for this first hypothesis was 

that higher cost of living would induce individuals to sacrifice food budgets for other costs such 

as rent, and that in many areas the perceived or real costs of healthier food items would be higher 

than those of less healthy items, such that lower overall food budgets would induce less healthy 

food acquisitions. Our second hypothesis was that SNAP participation would be associated with 

living in a lower-cost area after accounting for other observed and unobserved covariates related 

to both SNAP and area of living.  The rationale for this second hypothesis was that SNAP 

benefits are adjusted based on national average cost of living indices, not local data, so the 

purchasing power of a SNAP dollar would be higher in lower food-cost areas, where overall cost 

of living is typically lower as well. Our third hypothesis was that any association between SNAP 

participation and the healthfulness of food acquisitions (i.e., HEI scores) would be partially 

moderated by area-level cost of living. The rationale for this third hypothesis is that SNAP 
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participation itself may lead to changes in the healthfulness of food acquisitions (e.g., SNAP 

benefits may lead to the ability to purchase more fruits and vegetables, which are generally 

thought to be more expensive products), but the degree to which SNAP dollars affect the 

healthfulness of food acquisitions may be influenced both by food costs in the area, and by costs 

of living including expenditures that compete with the food budget (e.g., rent) and affect how 

much SNAP users are able to supplement their SNAP allotments with other sources of income.  

All three of our hypotheses have genuine scientific equipoise, as reasonable alternative 

hypotheses are available for each. Specifically, an arguable alternative to our first hypothesis is 

that a higher area-level cost of living will be associated with more healthy food acquisitions, due 

to self-selection of highly health-conscious persons to live in more costly areas that have real or 

perceived increased availability of healthier foods, and real or perceived social norms favoring 

healthier food consumption. Similarly, an alternative to our second hypothesis is that higher-cost 

areas would be associated with greater SNAP participation because people in such areas would 

be more desperate for funds to supplement their budgets. Finally, an alternative to our third 

hypothesis is that any association between SNAP participation and the healthfulness of food 

acquisitions is not significantly moderated by area-level cost of living, as the latter may be 

irrelevant or have only a weak effect if SNAP participants compartmentalize their food budget 

from other budgets. 

Methods 

We tested our hypotheses using newly-available data from the National Household Food 

Acquisition and Purchase Survey (2012-13) made available by the U.S. Department of 

Agriculture, which is the first nationally representative survey of American households to collect 
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comprehensive data about household food purchases and acquisitions (44). 

 

Details on the data source 

The National Household Food Acquisition and Purchase Survey, or FoodAPS, is a unique 

household-level food survey that details food-at-home (FAH) and food-away-from-home 

(FAFH) purchases and acquisitions among a national sample of households, each surveyed for 

one week during the period April 2012 to January 2013. Households were defined as all persons 

who live together and share food and who expect to be present at the sampled address during at 

least part of the data collection week. The survey design attempts to be representative of non-

institutionalized households nationally, as well as representative of four subgroups: SNAP 

participants, and nonparticipant households in three income groups (income below the federal 

poverty threshold for household size; incomes equal to or greater than 100 percent of the federal 

poverty threshold but less than 185 percent; and income greater than or equal to 185 percent of 

the federal poverty threshold). The sample of households was selected through a multi-stage 

sample design limited to the contiguous United States, with oversampling of SNAP-participating 

and other low-income households. Within a stratified sample of 50 counties or groups of 

contiguous counties selected as Primary Sampling Units through probability proportional to size 

selection, eight secondary sampling units of a census block group or group of contiguous block 

groups were selected. Among these secondary sampling units, households were screened for 

eligibility, and a total of 4,826 households containing 14,317 individuals participated in the 

survey.  

During screening for participation, a primary respondent in each household was identified 



Food APS Research at UKCPR – Page 53 

 

as the main food shopper or meal planner, and was asked to complete two in-person interviews 

and to call the study’s telephone center for three brief telephone interviews regarding food 

acquisition events over the course of one week. In addition, each household member 11 years or 

older was asked to track and report all food acquisitions during the week in specially-prepared 

booklets distinguishing between food and drink brought home and used to prepare meals for 

consumption at home or elsewhere (e.g., sandwich made at home and brought to work), which 

constituted FAH, and food and drink obtained and consumed away from home, and prepared 

foods brought home or delivered (e.g., pizza), which constituted FAFH. The booklets also 

enabled participants to enter detailed information about food acquisition “events”, including 

location, date, and payment types. Households scanned barcodes on packaged foods and 

submitted receipts from stores and restaurants, which enabled independent confirmation of 

reports. Variable-weight items (e.g., a head of lettuce or individual apples) and other items 

without a barcode were also included by enabling respondents to scan barcodes from a 

standardized food barcode book or write item details of foods not coded. Post-collection 

processing included resolution of inconsistencies through receipts and imputation where 

possible, as detailed elsewhere (45). To enable nutritional analyses, individual food items were 

matched to items in the USDA Food and Nutrient Database for Dietary Studies or the USDA 

National Nutrient Database for Standard Reference (46,47).  

Additional data collection in FoodAPS included detailed demographic, socioeconomic 

and nutrition-related information about each household. This information included SNAP 

participation status in the prior 30 days, determined by both participant self-report and matches 

to USDA administrative records for confirmation of SNAP participation or non-participation 
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among the 97.5% of respondents who consented to the administrative match. When 

administrative match was not consented to or no match was found, participant self-report of 

SNAP participation status was taken at face value. Of note, FoodAPS identified households in 

which anyone received SNAP, but did not try to identify who within each household received 

SNAP, under the premise that household members would typically share SNAP benefits. 

In addition to SNAP participation, FoodAPS data collection included self-reported 

information about the primary store at which the household did most of its food shopping, the 

typical mode of transportation used to get to that store, and type of store (e.g., supercenter, 

grocery store, convenience store). Locations of SNAP-authorized stores were geocoded and 

distances from the households to the nearest SNAP supermarket or supercenter, as well as 

distances to the primary food store were recorded. Euclidean distance (straight line) estimates 

were our primary distance metric, as these are more standardized than driving and walking route 

estimates. Additional self-reported WIC participation by any member of the household and food 

security status based on the 10 questions used to assess household food security status in 

USDA’s 30-day Adult Food Security Scale were also asked, as were standard Census-type 

questions regarding participant demographics and socioeconomic characteristics including 

education and employment (48).  

Each household was given a sampling weight, based on reported SNAP participation 

status revised per the administrative data match, to make the sample nationally representative of 

all non-institutionalized households in the contiguous United States and account for differential 

probability of selection and nonresponse. Weights were stratified to replicate 2013 Current 

Population Survey Annual Social and Economic Supplement estimates of the number of 
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households in the United States and the distribution by demographic and economic 

characteristics using iterative proportional fitting for Hispanic status, race, annual income, 

receipt of SNAP, poverty status, household size, number of children in the household, and 

presence of least one person age 60 or older in the household. Weights were trimmed to reduce 

design effect.  

Data organization, variable construction, and choice of outcome metrics. 

 To perform our assessment, we first constructed estimates of household-level food 

acquisition, expressed in both kilocalories (kcals) and in food pattern equivalents units (ounce-

equivalents, oz-eq, or cup-equivalents, cup-eq) per household per day. Specifically, we used 

estimates of the kilocalories per 100 grams and food pattern equivalents per 100 grams contained 

in each food product, provided in the FoodAPS, which were estimated by the USDA by 

matching individual food items to records in the Food Patterns Equivalents Database (2011-

2012) and Food Patterns Ingredients Database, supplemented by the School Nutrition Dietary 

Assessment Study for foods obtained from reimbursable school lunch and breakfast meals 

(49,50). We multiplied kilocalories per 100 grams or food pattern equivalents per 100 grams by 

the estimated volume (in 100-grams, unrounded to include exact decimals) of each product, also 

estimated by the USDA and provided in FoodAPS for both at-home and away-from-home food 

acquisition events based on participant-reported descriptions of food and/or product database 

estimates of the edible portion of each scanned food item. We summed the total kilocalories and 

total food pattern equivalents acquired per household across all events over the entire 7-day 

survey period, then computed the average total kilocalories as well as the food pattern 

equivalents per household member per day in the eight food categories assembled from the 
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classification system in the National Food and Nutrient Database for Dietary Studies, version 5.0 

(2012): (i) vegetables (total dark green, red and orange, starchy vegetables, and legumes counted 

as vegetables); (ii) whole fruits and 100% fruit juices; (iii) whole grains; (iv) refined grains; (v) 

dairy products (milk, yogurt, cheese, and whey); (vi) proteins (meat, poultry, seafood, eggs, soy, 

nuts, seeds, and legumes counted as protein); (vii) solid fats and oils; and (viii) added sugars. 

Individual-level estimates accounted for the number of household members and non-household 

guests among whom the food item was reported to be shared; however, the FoodAPS survey 

only contained information on acquisitions, not on consumption (i.e., the data are not dietary 

recalls), hence we cannot account for intra-household variations in consumption, food 

preparation, or food waste. 

 As an overall dietary quality metric, we computed a Healthy Eating Index (HEI, version 

2010) for each individual. The HEI is a widely-used metric of overall dietary quality, which has 

been correlated to cardiovascular disease and cancer risk in longitudinal cohort studies of diet 

and health. A key advantage of HEI is that it is constructed to assess dietary quality through 

universal standards and a density approach (e.g., nutrients per 1000 calories) that can be applied 

and compared at all levels of the food system—from farm to supermarket to individual—and at 

all levels of production or consumption—from manufacturer to neighborhood availability to food 

acquisition to dietary intake. Hence, the Index has been applied, for example, to assess the 

dietary quality of neighborhood food environments, individual restaurant menus, supermarket 

sales circulars, and food purchases among food assistance program participants (51–57). At the 

time of this writing, the HEI-2010 was the most recently-available year of the Index, 

corresponding to the Dietary Guidelines for Americans, 2010 (58). The more recent Guidelines 
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(released 2016, but recommended for years 2015-2020) are mostly concordant with the 2010 

Guidelines, but additionally recommend reducing meat intake among adult males, and limiting 

intake of added sugars (59). The HEI-2010 is a composite score from 0 to 100 indicating the 

concordance of, in our case, food acquisitions per person per day, to the 2010 Dietary Guidelines 

for Americans; a score of 50 would indicate that the quality of an individual’s food acquisitions 

are only half as high as recommended. The score is constructed from 12 food categories and 

nutrient components by adding points for foods considered health-promoting per the 2010 

Guidelines (total fruit, whole fruit, total vegetables, greens and beans, whole grains, dairy, total 

protein foods, seafood and plant proteins, and poly- and mono-unsaturated fatty acids), and for 

low intake of foods considered potentially harmful to health (refined grains, sodium, and empty 

calories, referring to calories from solid fats, added sugars and alcohol). Macro- and micro-

nutrient components such as sodium and fatty acids were available per food item in FoodAPS, 

calculated by the USDA by matching foods to the Food and Nutrient Database for Dietary 

Studies (2011-2012), and its underlying National Nutrient Database for Standard Reference 

(46,47), as well as to the School Nutrition Dietary Assessment Study (50) for foods obtained 

from reimbursable school lunch and breakfast meals. The HEI-2010 for each individual was then 

calculated from the density ratios of each food category and nutrient component, using 

standardized software code assembled by the National Cancer Institute, available online (60). For 

reference, a recent assessment of the 2010 U.S. food supply based on national food availability 

data estimated an overall HEI-2010 score of 55 for the nation (54); a recent assessment of U.S. 

national food consumption patterns based on dietary recall data in the National Health and 

Nutrition Examination Survey (2009-2010, N = 9,522) also reported a mean HEI-2010 score of 
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55 (51). 

Hypothesis 1: Relationships between cost of living and healthy food acquisition 

To test hypothesis (i), that a higher area-level cost of living is associated with less healthy 

food acquisition, we regressed daily per person food acquisition in each food category and, 

separately, the HEI measure of food acquisition quality, against metrics of the cost of living 

(regional price parities or the geographic adjustment to the supplemental poverty measure). We 

performed separate regressions for each food category and for the HEI score, and separate 

regressions for each metric of living cost (overall regional price parity; regional price parities for 

rent, food, all goods and all services; and the geographic adjustment to the supplemental poverty 

measure). Among the regional price parities, we specifically focused on the rent regional price 

parity (generally the largest share of overall household expenditure among low-income 

consumers) and food regional price parity (39). The regional price parities and geographic 

adjustments to the supplemental poverty measures were available at the Metropolitan Statistical 

Area (MSA) level, and included an average for non-MSA areas in each state. The BEA lacks 

regularly-updated data for geocoded areas smaller than the MSA level, hence it is likely that if 

SNAP were to be adjusted for local area-level cost of living, the MSA level would be the 

smallest local area for which such costs would be routinely available from the BEA. By 

comparison, the USDA’s Quarterly Food-at-home Price Database, the previously most-

comprehensive public source for food price data nationally, was aggregated to much larger food 

purchasing metropolitan market groups, which are more aggregate than the level of MSA (i.e., 

there are 99 food purchasing market groups, instead of the 388 MSAs). We linked the MSA-

level data to county geocodes in the FoodAPS dataset, as MSAs are defined by one or more 
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counties, and county geocodes were available in the FoodAPS. 

In our regressions, we included individual-, household-, and area-level covariates that we 

theorized to be potentially of pertinence to the relationship between area-level cost of living and 

food acquisitions. We chose the county as the area level of interest, as significant data were 

available at the county level to describe pertinent aspects of the food environment and living 

environment that were unavailable at smaller geocoded units, as detailed further below. 

Additionally, recent studies including those conducted on FoodAPS have revealed that SNAP 

participant households as well as non-participant households tend to travel outside of their 

immediate census block or census tract when acquiring food, but the primary food store remains 

typically within their county of residence (61–64). Hence, too small of a geographical area may 

not capture pertinent covariates of interest. At the individual level, covariates in our regressions 

included age (in years), age-squared, sex, race (White, Black, or other), ethnicity (Hispanic or 

not), education (high school or less, or more than high school), and employment status (currently 

employed or not). At the household level, covariates in our regressions included household size 

(number of non-guest residents in the home), income (annual, as a percent of the federal poverty 

threshold adjusted for household size), distance to primary food store (Euclidean distance, which 

per a prior USDA assessment was thought to provide more standardized estimates than distances 

based on driving or walking routes (4)  (65), rural residence, food security status (low or very 

low food security of the primary adult respondent on the USDA 30-day adult food security scale) 

(48), WIC participation (current self-reported participation of any household member), and 

SNAP participation (current SNAP participation of any household member, either 

administratively-confirmed or based on self-report for participants not consenting to 



Food APS Research at UKCPR – Page 60 

 

administrative confirmation or for whom administrative data were not available for 

confirmation). At the county level, covariates in our regressions included density of 

supermarkets (stores per 1,000 population), density of non-supermarket food-selling stores (per 

1,000), density of full-service restaurants (“sit down” restaurants, per 1,000), density of limited-

service restaurants (“order at the counter” restaurants, often referred to as “fast food” 

establishments, per 1,000), poverty rate (% of population below federal poverty threshold), area-

level household income (median annual in 2012 inflation-adjusted U.S. Dollars), education (% of 

population 25 years or older with at least high school education), access to kitchens (% of 

occupied housing units with complete kitchen facilities available), and vehicle density (% of 

occupied housing units with at least one vehicle available). 

Despite the extensive data available on pertinent covariates at multiple levels, additional 

unobserved factors could influence individuals to both live in a high-cost or a low-cost area, and 

affect the healthfulness of their food acquisition patterns (e.g., preferences for organic foods 

might influence individuals towards living in higher-cost areas and towards having higher HEI 

scores). Hence, our regressions were performed using an endogenous treatment effects model, 

which attempts to control for the endogeneity of treatment assignment (whether one lives in a 

high-cost or lower-cost area) by including residuals from a model of treatment assignment as a 

regressor in the models for the potential outcomes (i.e., a control function approach) (66) . The 

endogenous treatment effects approach has the following functional form: 

[1] 𝑦𝑖0 = 𝐸(𝑦𝑖0|𝒙𝑖) + 𝜖𝑖0 

[2] 𝑦𝑖1 = 𝐸(𝑦𝑖1|𝒙𝑖) + 𝜖𝑖1 

[3] 𝑡𝑖 = 𝐸(𝑡𝑖|𝒛𝑖) + 𝑣𝑖 
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[4] 𝑦𝑖 = 𝑡𝑖𝑦𝑖1 + (1 − 𝑡𝑖)𝑦𝑖0 

[5] 𝐸(𝜖𝑖𝑗|𝒙𝑖𝒛𝑖) = 𝐸(𝜖𝑖𝑗|𝒛𝑖) = 𝐸(𝜖𝑖𝑗|𝒙𝑖) = 0 for 𝑗 ∈ {0, 1} 

[6] 𝐸(𝜖𝑖𝑗|𝑡) ≠ 0 for 𝑗 ∈ {0, 1} 

where individuals i experience potential outcomes (food pattern equivalents, or HEI scores) 𝑦𝑖1 

when living in a high-cost area, or 𝑦𝑖0 when living in a lower-cost area. The variable 𝑡𝑖 

designates the observed treatment and 𝑦𝑖 the observed outcome. Each of the potential outcomes y 

is estimated from its expected value conditional on observed covariates 𝒙𝑖 and an unobserved 

random component 𝜖𝑖𝑗 for 𝑗 ∈ {0, 1}. The treatment t (whether one lives in a high- or lower-cost 

area) is also estimated from its expected value conditional on regressors 𝒛𝑖 (which, importantly, 

do not need to differ from 𝒙𝑖), and from an unobserved component 𝑣𝑖. While equations 1 through 

4 specify the treatment effects model, equation 5 specifies that unobserved factors in the 

potential outcome are independent from the observed regressors 𝒛𝑖, and equation 6 specifies the 

endogeneous nature of treatment, indicating that unobserved factors in the outcomes equations 

are potentially correlated to the treatment. Equation 5 restricts the correlation between 𝑡𝑖 and 

unobserved factors to be equivalent to the correlation between 𝜖𝑖𝑗 and 𝑣𝑖, which means that: 

 [7] 𝐸(𝜖𝑖𝑗|𝑡) = 𝐸(𝜖𝑖𝑗|𝐸(𝑡|𝒛𝑖) + 𝑣𝑖) = 𝐸(𝜖𝑖𝑗|𝑣𝑖) = 𝑣𝑖𝛽2𝑗 

To estimate the model, equation 3 is fit using a probit estimator, which produces the 

statistic 𝑣�̂� for the difference between the treatment and the estimated 𝐸(𝑡𝑖|𝒛𝑖); this statistic, 

given equation 7, allows us to compute an estimate of 𝐸(𝑦𝑖𝑗|𝒙𝑖 , 𝑣𝑖 , 𝑡𝑖): 

[8]  𝐸(𝑦𝑖𝑗|𝒙𝑖 , 𝑣𝑖 , 𝑡𝑖 = 𝑗) = 𝒙𝑖
′𝛽1𝑗 + 𝑣𝑖𝛽2𝑗 for 𝑗 ∈ {0, 1}. 

We estimate the effect of living in a high- versus lower-cost area (the treatment) on the 
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outcome of food pattern equivalents acquired in each food category and, separately, on the 

outcome of HEI score. The average treatment effect of living in a high- versus lost-cost area, 

[𝐸(𝑦𝑖𝑗|𝒙𝑖 , 𝑣𝑖 , 𝑡𝑖 = 1) −  𝐸(𝑦𝑖𝑗|𝒙𝑖 , 𝑣𝑖 , 𝑡𝑖 = 0)], is estimated by the generalized methods of 

moments using the Stata module eteffects (67). We included all individual-, household-, and 

county-level covariates as both regressors 𝒙𝑖 and 𝒛𝑖. As the endogenous treatment effects 

estimation approach requires a binary treatment, we constructed a cut-point for values of each 

regional price parity and for the geographic adjustment to the supplemental poverty measure, 

above which area cost of living was defined as “high” (and, conversely, below which cost of 

living was defined as “lower”). The cut-point for each regional price parity (overall, and for each 

good or service regional price parity) and for the geographic adjustment to the supplemental 

poverty measure was defined as one standard deviation above the mean. For comparison, we 

performed ordinarily least squares (OLS) regressions of the food pattern equivalents acquired 

and of HEI score against the metrics of cost of living and the above-noted covariates, although 

the effect size estimates from such regressions would be expected to be biased by failing to 

account for potential unobserved factors influencing both the area of living and healthfulness of 

food acquisitions. Our rationale for performing OLS regressions was to explore whether older 

studies using OLS estimates (e.g., correlating SNAP participation to worse nutrition (17)) would 

be consistent with the endogenous treatment effects model. The Stata survey (svy) module was 

utilized to adjust regression estimates for stratification and clustering, and to apply survey 

sample weights to account for differential sampling and nonresponse. Missing data was not 

imputed, as food acquisition data cannot be determined to be missing (i.e., a failure to scan or 

report a food cannot be identified), and minimal data were missing for HEI score calculations or 
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for covariates in the regressions (<7% missing for any single variable). 

Hypothesis 2: SNAP participation and cost of living 

To test hypothesis (ii), that SNAP participation is associated with living in a lower-cost 

area, we repeated the above endogenous treatment effects model, but labeled SNAP participation 

as the treatment t and the probability of living in an area with higher cost of living as the 

outcome y estimated using a probit model. The relationship between SNAP participation and cost 

of living can be conceived of as endogenous both because of the potential for reverse causality 

(e.g., living in a higher-cost area may induce a person to sign up for SNAP benefits to afford 

more or better quality foods, or alternatively receiving SNAP may lead a person to select a low-

cost area in which to live, to make dollars go further), and because of unobserved factors (e.g., 

persistent economic deprivation may lead to both SNAP participation for poverty relief and 

selecting a lower cost of living area to reduce housing costs).  

In regressing cost of living against SNAP participation, we included all of the individual-, 

household-, and county-level covariates as in our test of hypothesis (i), but we additionally 

included more regressors among 𝒛𝑖—specifically, state variations in SNAP administration policy 

that may serve as instrumental variables potentially inducing or discouraging SNAP 

administration. We tested several available instrumental variables describing state-level SNAP 

administrative policies that were included in FoodAPS, imported from the SNAP Policy 

Database: (i) whether the state uses broad-based categorical eligibility to increase or eliminate 

the asset test and/or to increase the gross income limit for virtually all SNAP applicants (true for 

73% of the unweighted FoodAPS participant sample); (ii) whether the state operates call centers, 

and whether or not call centers service the entire State or select regions within the State (74%); 
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(iii) whether the state operates a Combined Application Project for recipients of Supplemental 

Security Income (SSI), so that SSI recipients are able to use a streamlined SNAP application 

process (66%); (iv) whether the state disqualifies SNAP applicants or recipients who fail to 

perform actions required by other means-tested programs, primarily Temporary Assistance for 

Needy Families (TANF) (41%); (v) whether the state has been granted a waiver to use a 

telephone interview in lieu of a face-to-face interview at initial certification, without having to 

document household hardship (77%); (vi) whether the state has been granted a waiver to use a 

telephone interview in lieu of a face-to- face interview at recertification, without having to 

document household hardship (90%); (vii) whether the state requires fingerprinting of SNAP 

applicants (34%); (viii) whether all legal noncitizen adults (age 18-64) who satisfy other SNAP 

eligibility requirements such as income and asset limits are eligible for Federal SNAP benefits or 

State-funded food assistance (22%); (ix) whether the state allows households to submit a SNAP 

application online (74%); (x) the sum of Federal, State, and grant outreach spending in nominal 

dollars ($1,000s) (83% non-zero); (xi) for households with earnings, whether the state uses the 

simplified reporting option that reduces requirements for reporting changes in household 

circumstances (88%); (xii) whether the state excludes all vehicles in the household from the 

SNAP asset test (83%); (xiii) whether the state exempts an amount higher than the SNAP 

standard auto exemption from the fair market value to determine the countable resource value of 

a vehicle (14%); and (xiv) whether the state excludes at least one, but not all, vehicles in the 

household from the SNAP asset test (3%). Other policies listed in the SNAP Policy Database had 

no variation (i.e., all states had the same policy), for example in eligibility towards noncitizen 

children, or had complete overlap with one of the above instruments in terms of which states 
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implemented the policy. To select the strongest instruments for inclusion among regressors 𝒛𝑖 in 

the endogenous treatment effects model, we performed a two-stage least-squares regression of 

overall cost of living against the individual-, household-, and county-level covariates and SNAP 

participation, where the latter was instrumented by each eligible instrument in turn; we then 

included the subset of instruments with a significant (p<0.05) first-stage F-test>10, which were 

instruments (ii) call centers (F=76.0), (iii) combined application project for SSSI recipients (F 

=699.2), (iv) disqualification for failing to perform TANF requirements  (F =279.3), (vi) waiver 

for telephone interview (F =204.9), (vii) fingerprinting (F =526.8), (viii) eligibility for 

noncitizen adults (F =259.7), (ix) online application (F =160.7), (x) outreach spending (F =14.4), 

and (xi) simplified reporting (F =249.8) in the above list.  

We isolated our test of hypothesis (ii) to only the subset of participants in SNAP and non-

participants with household income less than 185% of the federal poverty threshold level, 

because our question was applicable only to the subset of the population theoretically eligible for 

SNAP participation and 185% of the federal poverty threshold is used as a cut-point for 

eligibility. We estimated both the average treatment effect (ATE, or the generalizable effect of 

participating in SNAP on whether a person lives in a low- or higher-cost area), and the average 

treatment effect on the treated (ATET, or the specific effect of participating in SNAP among 

those observed to be participants), using the Stata eteffects module (67). As in our testing of 

hypothesis (i), missing data were not imputed prior to estimation of the treatment effects in our 

regressions testing hypothesis (ii). 

Hypothesis 3: Whether SNAP effects on healthy food acquisition are moderated by cost of living 

 Finally, we tested hypothesis (iii) that any association between SNAP participation and 
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the healthfulness of food acquisitions (i.e., HEI scores) is partially moderated by area-level cost 

of living. To test this hypothesis, we repeated the endogenous treatment effects model, first 

labeling SNAP participation as the treatment t and food pattern equivalents acquired and, 

separately, overall HEI score as the outcome y, to assess the association between SNAP and the 

healthfulness of food acquisitions, then repeating the analysis with the interaction between 

SNAP participation and the area cost of living as the treatment, to determine the significance of 

the interaction term defining how the SNAP-food acquisition relationship was moderated by cost 

of living.  

 As with hypothesis (ii), we isolated our test of hypothesis (iii) to only the subset of 

participants in SNAP and non-participants with household income less than 185% of the federal 

poverty threshold level, because our question was applicable only to the subset of the population 

theoretically eligible for SNAP participation. We estimated both the average treatment effect 

(ATE, or the generalizable effect of participating in SNAP on whether a person lives in a low- or 

higher-cost area), and the average treatment effect on the treated (ATET, or the specific effect of 

participating in SNAP among those observed to be participants), using the Stata eteffects 

module. As in our testing of the other two hypotheses, missing data were not imputed prior to 

estimation of the treatment effects in our regressions testing hypothesis (ii). 

All estimates were performed using Stata version MP/14 (StataCorp, College Station, 

Texas).  

Results 

Descriptive statistics on the analytical sample 

Table 1 provides summary statistics on the analytical sample. The sample included 1,581 
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SNAP participant households (N=5,414 individuals), 1,391 non-participant households <185% 

of the federal poverty threshold (N=3,863 individuals), and 1,852 non-participant households 

>=185% of the federal poverty threshold (N=5,036 individuals). As shown in the Table, the 

average age of the SNAP participants in the sample (30 years of age) was eight to nine years 

younger than non-participants; only 6% of the SNAP participant sample were above the age of 

65, as compared to 16% of non-participants <185% of the federal poverty threshold and 13% of 

non-participants >=185% of the federal poverty threshold. The SNAP participants in the sample 

had a similar proportion of females (54%), as compared to 54% and 51% of non-participants 

below and at/above 185% of the federal poverty threshold, respectively. Fewer SNAP 

participants in the sample were White (63%, versus 75% and 83% of non-participants below and 

at/above 185% of the federal poverty threshold, respectively), and more were Black (27% versus 

15% and 10%, respectively) and Hispanic (31%, versus 28% and 12%, respectively). Fewer 

SNAP participants in the sample had completed high school (48%, versus 59% and 73% of non-

participants below and at/above 185% of the federal poverty threshold, respectively) and fewer 

were employed (29%, versus 34% and 56%, respectively).  

At a household level, the SNAP participant sample had larger household sizes (4.2 

members, versus 3.6 and 3.1 among non-participants below and above 185% of the federal 

poverty threshold, respectively). SNAP participant households in the sample also had higher 

mean income than non-participants less than 185% of the federal poverty threshold, with SNAP 

households having an income of 138.6% of the federal poverty threshold for household size, 

versus 100.8% for non-participants less than 185% of the federal poverty threshold. This finding 

is contradictory to the perception that non-participants are those who are likely to get smaller 
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SNAP benefits and therefore fail to enroll. SNAP participants in the sample also faced lower 

housing costs ($577 of monthly rent or mortgage expenses, versus $721 and $1,014 among non-

participants below and at/above 185% of the federal poverty threshold, respectively), and were 

closer to their primary food store in Euclidean miles (3.1, versus 3.6 and 3.9, respectively), 

though both housing costs and distances to stores varied widely among all sample subgroups, as 

shown in Table 1. SNAP participants in the sample tended to be less rural than the other groups 

(23% in a rural residence, versus 28% and 35% among non-participants below and at/above 

185% of the federal poverty threshold, respectively). SNAP participants in the sample were also 

more likely to have low or very low food security (43%, versus 32% and 7% among non-

participants below and at/above 185% of the federal poverty threshold, respectively) and to 

participate in WIC (22%, versus 14% and 3%, respectively).  

At the county level, SNAP participants in the sample had a similar density of 

supermarkets as non-participants (12 per 1,000 people), and slightly more non-supermarket food 

retailers (28 per 1,000, versus 26 and 23 among non-participants below and at/above 185% of the 

federal poverty threshold, respectively). SNAP participants in the sample also had fewer full-

service restaurants (74 per 1,000 versus 79 and 82 among non-participants below and at/above 

185% of the federal poverty threshold, respectively), but a similar density of limited-service “fast 

food” restaurants (at 69 per 1,000 among all subgroups). The poverty rate in the counties in 

which the SNAP participant sample lived was equivalent to that of the non-participant sample 

less than 185% of the federal poverty threshold (at 16%), and only slightly lower than among the 

non-participant sample ≥185% of the federal poverty threshold (at 14%). County-level median 

household incomes were more graded, with the SNAP participant sample living in counties with 
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an area median income of $50,400, versus $52,800 and $55,400 among non-participants below 

and at/above 185% of the federal poverty threshold, respectively. County-level high school 

educational attainment among persons at least 25 years old was similar across subgroups (85% 

among the SNAP participant sample, versus 84% and 87% among non-participants below and 

at/above 185% of the federal poverty threshold, respectively). Vehicle density and kitchen 

availability was high and did not differ among the subgroup samples of SNAP participants and 

non-participants below and at/above 185% of the federal poverty threshold.  

The cost of living metrics were generally only minimally lower among the SNAP 

participant sample, on average, than among the non-participant samples—but the distributions of 

the cost of living metrics were largely overlapping among all three subgroup samples. The 

overall regional price parity averaged 98% among the SNAP participant sample versus 100% 

and 99% among non-participants below and above 185% of the federal poverty threshold, 

respectively. The rent regional price parity was more substantially lower on average for the 

SNAP participant sample, at 96%, versus 104% and 102% among non-participants below and 

at/above 185% of the federal poverty threshold, respectively. The food regional price parity was 

minimally lower on average for the SNAP participant sample, at 99%, versus 100% and 100% 

among non-participants below and at/above 185% of the federal poverty threshold, respectively. 

The regional price parity for goods was at 99% for all subgroup samples, and for services was 

slightly lower at 98% for the SNAP participant sample, versus 100% and 99% among non-

participants below and at/above 185% of the federal poverty threshold, respectively. The 

geographic adjustment to the Supplemental Poverty Measure differed more between SNAP 

participants and non-participants, at 99% for the SNAP participant sample, versus 105% and 
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104%, respectively, among non-participants below and at/above 185% of the federal poverty 

threshold.  

To further characterize overall cost of living among the studied populations, we plotted 

the distribution of the overall regional price parity among each subgroup sample (Figure 1). As 

shown in the Figure, all three population subgroups largely spanned the same spectrum of 

possible cost of living levels, and the overall regional price parity was multi-modal, with a larger 

population living below the national average cost (more common for SNAP participants than 

non-participants), a second group living near the national average (also more common for SNAP 

participants than non-participants), a third group living around 7% above the national average 

cost (more common for the non-participants at/above 185% of the federal poverty threshold) and 

a fourth group living around 25% above the national average cost (interestingly, most common 

for the non-participants below 185% of the federal poverty threshold).  

Food acquisition patterns in the analytical sample 

 Table 2 summarizes the food acquisition patterns, at the household and at the individual 

level, among SNAP participants and non-participants below and at/above 185% of the federal 

poverty threshold in our analytical sample. As shown in Table 2, food acquisition patterns did 

not differ significantly among the three subgroup samples, except in the food category of added 

sugars. Among all groups, added sugars constituted the most acquired food category by grams, 

with SNAP participants having significantly (at the p<0.05 level) higher acquisition (941 

grams/person/day, SE: 48) than non-participants below 185% of the federal poverty threshold 

(749, SE: 35), though not significantly differing from non-participants at/above 185% of the 

federal poverty threshold (884, SE: 45). Fats and oils constituted the second largest group of 
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acquisitions by grams, followed by dairy products, refined grains, then vegetables and fruits, and 

last whole grains. The subgroups did not significantly differ in their acquisitions in these 

categories, and overall kilocalories acquired did not significantly differ among the groups 

(ranging from a low of 2,336 kcals/person/day on average the SNAP non-participant sample 

below 185% of the federal poverty threshold, SE: 114, to a high of 2,588 kcals/person/day on 

average among the SNAP participant sample, SE: 122).  

To provide reference ranges and context to the food acquisition values, Table 3 compares 

the estimated food acquisitions per person per day in our analytical sample to the reported food 

consumption (estimated via 24-hour dietary recalls) among participants in the National Health 

and Nutrition Examination Survey (NHANES) (68), and to current National Dietary Guidelines 

(69). As shown in the Table, the food acquired among all three subgroup samples was generally 

consistent with the food consumed by nationally-representative participants in the NHANES 

survey, although the standard errors around the food acquired estimates were larger than the 

standard errors around consumption in NHANES. The notable exceptions were in added sugars, 

fats and soils, and refined grains, where estimates of food acquired were 86%, 27%, and 29% 

higher, respectively, in our FoodAPS food acquisition estimates than in the NHANES food 

consumption estimates. This may be because acquisition (FoodAPS) differs profoundly from 

consumption (NHANES) for these items, particularly because these products have longer shelf-

lives and potentially are more commonly wasted or shelved rather than consumed; alternatively, 

it may suggest population sampling differences, as the most acquisition in all three categories 

was among the SNAP participant sample, whereas NHANES is a nationally-representative 

sample. Alternatively, the stigma associated with consuming these foods may mean that their 
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consumption is underreported in NHANES dietary recalls. Consistent with the average HEI-2010 

score of 55.4 (SE: 0.7) among NHANES participants, the average HEI-2010 score among all 

subgroup samples in FoodAPS was 54.4 and 54.7 (among SNAP participants and non-

participants below 185% of the federal poverty threshold, respectively, SE 0.2) or 55.0 (among 

non-participants at/above 185% of the federal poverty threshold, SE 0.1). Also consistent with 

NHANES, the food acquisition patterns in FoodAPS were highly discordant from federal 

nutrition guidelines, with all groups acquiring or consuming few fewer vegetables, fruits, whole 

grains or dairy products than recommended, and far more refined grains, fats and oils, and added 

sugars than recommended. 

Hypothesis 1: is a higher area-level cost of living associated with less healthy food acquisition? 

 Table 4 summarizes the estimated average relationship between living in a high-cost 

county and patterns of food acquisition in the overall FoodAPS analytical sample. The 

coefficients and standard errors displayed in the Table are estimates from the endogenous 

treatment effects model in which county-level cost of living is regressed against food 

acquisitions in each food category, after controlling for the individual-, household-, and county-

level covariates listed in Table 1. In Table 4, the rows display the metric of cost of living being 

used as an independent variable (e.g., overall regional price parity, regional price parity for rent, 

etc.); the columns display the outcome measure of foods acquired in each food category (e.g., 

vegetables, fruits, etc.) in food pattern equivalents (e.g., cup-equivalents, ounce-equivalents) 

specific to that food category, per person per day. For reference, the mean levels of food 

acquired in food pattern equivalent units, per person per day, is provided in Table 2.  

As shown in Table 4, no matter which metric we used as a measure of cost of living 



Food APS Research at UKCPR – Page 73 

 

(overall regional price parity, category-specific regional price parity, or the geographic 

adjustment to the Supplemental Poverty Measure), living in a higher cost of living county was 

associated with significantly fewer acquisitions of vegetables, fruits, and whole grains, and was 

associated with significantly greater acquisitions of refined grains, dairy products, protein, fats 

and oils, and added sugars. Having controlled for individual-level factors such as education level, 

household-level factors such as income, and county-level factors such as food availability, living 

in a high-cost county, as measured by the overall regional price parity, was associated with a 

decline in vegetable acquisition by about 0.65 cup-equivalents per person per day (SE: 0.04, 

p<0.001), which is approximately a 37% decline relative to estimated mean acquisition for that 

food category among equivalent persons living in a low-cost county. Living in a higher-cost 

county (measured by the overall regional price parity) was also associated with 0.14 cup-

equivalents lower fruit acquisitions (16%), and 0.11 ounce-equivalents lower whole grain 

acquisitions (11%). By contrast, living in a high-cost county, as measured by the overall regional 

price parity, was associated with an increase in refined grain acquisition by about 2.35 ounce-

equivalents per person per day (SE: 0.12, p<0.001), which is approximately a 34% increase 

relative to mean acquisitions for that food category among equivalent persons living in a low-

cost county. Living in a higher-cost county (measured by the overall regional price parity) was 

also associated with increased fat and oil acquisitions of 36.63 grams (52%), and increased added 

sugar acquisitions of 9.40 teaspoon-equivalents (35%). Living in a high-cost county was 

associated with a higher caloric intake by approximately 550 kcals/person/day when using the 

overall regional price parity as the metric of cost of living. Overall, living in a high-cost county, 

as measured by the overall regional price parity, was associated with a 6.0 point lower HEI-2010 
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score (SE: 0.09, p<0.001), a 11% decrease relative to the mean among equivalent persons living 

in a low-cost county.  

Different subcategories of costs of living (rent, food, all goods, or all services) were most 

strongly associated with changes in different food categories. As shown in Table 4, reduced 

acquisition of vegetables was more strongly associated with an increase in rent regional price 

parity than with an increase in the food regional price parity. Acquisitions in the food categories 

of whole grains, protein, and fats and oils, as well as the overall HEI score, were also most 

sensitive to the rent regional price parity as compared to any other subcategory of cost of living. 

The food regional price parity was more strongly correlated to acquisitions of fruits, refined 

grains, dairy products and added sugars than any other regional price parity. The geographic 

adjustment to the Supplemental Poverty Measure was, however, more strongly related to 

acquisitions of food in all of those categories, and to overall HEI-2010 score, than was the food 

regional price parity (Table 4). Overall, living in a high cost of living area as defined by the 

geographic adjustment to the Supplemental Poverty Measure was associated with a 2.1 point 

decline in HEI-2010 score, SE 0.9, p<0.05), whereas living in a high cost of living area as 

defined by the food regional price parity was associated with a 1.4 point decline (SE 1.0, 

p>0.05), and living in a high cost of living area as defined by the rent regional price parity was 

associated with 6.0 point decline (SE 0.9, p<0.001).  

 Figure 2 provides a subgroup analysis of the relationship between living in a high-cost 

county and patterns of food acquisition, stratified by the three subgroup samples of SNAP 

participants, non-participants below 185% of the federal poverty threshold, and non-participants 

at/above 185% of the federal poverty threshold. The Figure displays the coefficients and 95% 
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confidence intervals around the coefficients from endogenous treatment effects models 

regressing county-level cost of living against HEI-2010 scores, after controlling for the 

individual-, household-, and county-level covariates listed in Table 1. Changes in individual 

food categories were consistent across all sample subgroups. As shown in Figure 2, however, 

SNAP non-participants below 185% of the federal poverty threshold were most sensitive to 

changes in the cost of living as measured by the regional price parity, while the non-participants 

at/above 185% of the federal poverty threshold were the least sensitive. Living in a high cost of 

living area, as measured by the overall regional price parity, was associated with 5.8 points lower 

HEI-2010 scores among SNAP participants (SE: 0.9, p<0.001), 7.0 points lower HEI-2010 

scores among SNAP non-participants below 185% of the federal poverty threshold (SE: 1.0, 

p<0.001), and 4.0 points lower HEI-2010 scores among SNAP non-participants at/above 185% 

of the federal poverty threshold (SE: 0.6, p<0.001). Consistent with the overall results, the 

subcategory of cost of living that was associated with the greatest decline in the HEI-2010 score 

among all subgroup populations was the rent regional price parity; by contrast, the food regional 

price parity was not significantly associated with changes in HEI scores due to large standard 

errors around the treatment effects model coefficient.  

Hypothesis 2: is SNAP participation associated with living in a lower-cost area? 

Table 5 summarizes the estimated average relationship between SNAP participation and 

the probability of living in a higher-cost area in the overall FoodAPS analytical sample. The 

coefficients and standard errors displayed in the Table are estimates from the endogenous 

treatment effects model in which county-level cost of living is regressed against food 

acquisitions in each food category, after controlling for the individual-, household-, and county-
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level covariates listed in Table 1, and additionally including instrumental variables that capture 

differences between states in how they execute SNAP enrollment (see Methods). In Table 5, the 

two columns display the change in the probability of living in a higher-cost county given SNAP 

participation, either among the overall eligible population (average treatment effect) or among 

those who are observed to be SNAP participants (average treatment effect on the treated). Each 

row lists a different metric for the cost of living, ranging from the overall regional price parity to 

various subcategories of regional price parities (rent, food, all goods, all services) to the 

geographic adjustment to the Supplemental Poverty Measure.  

As shown in Table 5, SNAP participation was associated with a higher probability of 

living in a high-cost county, no matter which metric we chose to define cost of living, after 

controlling for relevant individual-, household-, and county-level confounding variables. In 

addition, as shown in the Table, the estimated association between SNAP and the probability of 

living in a high-cost county was smaller for a theoretically eligible person (the average treatment 

effect) than for a person observed to participate in SNAP (average treatment effect on the 

treated). The average treatment effect was that SNAP participation was associated with a higher 

probability of living in a high-cost area, as measured by the overall regional price parity, from 

0.20 to 0.64 (an increase of 0.44, SE: 0.01, p<0.001); the average treatment effect on the treated 

was that SNAP participation was associated with a higher probability of living in a high-cost 

area from <0.01 to 0.22 (an increase of 0.22, SE: <0.01, p<0.001). Notably, the biggest treatment 

effect on the treated was observed for the food regional price parity (SNAP participation was 

associated with a higher probability of living in a high-food-cost area by 0.24, SE 0.01, 

p<0.001). Since the directionality of the treatment-effects model is uncertain, this implies either 
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that living in a high-cost county induces SNAP participation, or that SNAP participation induces 

living in a higher-cost area (e.g., SNAP permits individuals or their households to afford living in 

an area with more expensive food costs).  

Hypothesis 3: does cost of living moderate the SNAP-food acquisition relationship? 

Figure 3 displays the interactions between SNAP participation and cost of living when 

the outcome of interest is HEI-2010 score. As shown in the Figure, living in a high-cost area is 

associated with a lower HEI score, consistent with our results summarized above, but SNAP 

participation improved the low HEI score among those persons who lived in high-cost areas 

(from a score of 41 to a score of 61, based on the average treatment effect from the model). Yet 

the benefits of SNAP in changing the HEI-2010 score were not significant in lower-cost areas.  

 Table 6 provides a breakdown of how much SNAP participation and its interaction with 

cost of living is associated with food acquisitions in each of the studied food categories, based on 

endogenous treatment effects models. As shown in the Table, in both low- and high-cost areas 

SNAP participation was associated with increased fruit and vegetable acquisition. In lower cost 

areas, SNAP was also associated with increased acquisition of fats and oils and sugars, which 

offset the HEI improvements, which would have been observed from the increased fruit and 

vegetable acquisition. Hence, SNAP participation was associated with an insignificant change in 

HEI score in low-cost areas, but a significantly improved HEI score in high-cost areas.  

OLS results 

 In addition to testing the endogenous treatment effects model, we performed tests of 

endogeneity (estimating the significance of the correlation between unobservables that affect 

treatment and outcome in the control function equations specified above, which should be zero if 
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there is no endogeneity). All of these tests rejected the null hypothesis of no endogeneity for all 

of our regressions—justifying our use of the endogenous treatment effects modeling approach. 

As a result, we would expect that ordinary least squares (OLS) regressions would be biased in 

their estimates due for example to omitted variables. We nevertheless present them here to 

understand how the endogenous treatment effects model differs from what would be observed in 

OLS regressions, and to understand how key covariates included as control variables in the 

regressions also relate to the outcomes of interest. We also show these OLS regressions because 

they are the classical strategy for relating SNAP to food acquisition outcomes, and we wish to 

understand how much this classical inference method differs from our endogenous treatment 

effects model. 

 Table 7 presents the OLS regressions revealing the associations between cost of living 

metrics and food acquisition in each food category, as well as the overall HEI score. A higher 

cost of living was associated with less acquisition of vegetables and more acquisition of refined 

grains, dairy products, fats and oils, and added sugars. The associations between cost of living 

metrics and acquisitions in the other food categories were generally insignificant due to large 

standard errors around the estimates, or inconsistent in having some positive associations but not 

a robust association across all metrics of cost of living, as shown in the Table. A lower cost of 

living was generally associated with a lower HEI score, although this was not true of the food 

regional price parity; in OLS regressions, this association may reflect other unmeasured 

endogenous factors such as frugality, which may lead individuals towards less expensive cost of 

living areas and less-healthy cheaper foods. Notably, as shown in Table 7, older age, female sex, 

Black race or Hispanic ethnicity, greater education, employment, and income were associated 



Food APS Research at UKCPR – Page 79 

 

with higher HEI scores after controlling for cost of living and other household- and county-level 

covariates. Housing costs, longer distance to a primary food store, and low or very low food 

security were associated with lower HEI scores. At a county level, rural residence was associated 

with a higher HEI score, as was having fewer supermarkets or full-service restaurants, having 

more limited-service restaurants, and having less kitchen availability. These results are counter-

intuitive and we suspect that factors producing endogeneity between cost of living and 

healthfulness of food acquisitions may also be driving these estimates, such as the fact that rural 

areas that have all of the above features tend to have lower refined grain availability and greater 

fruit and vegetable availability, which are two food categories heavily weighted in the HEI 

metric. SNAP participation was associated with a lower HEI score, also contrary to the 

endogenous treatment effects model; this indicates that associations between SNAP and less 

healthy food acquisitions may be due to other factors not observed or controlled for, justifying 

our use of an endogenous treatment effects model in our main analysis. 

 Table 8 presents the OLS regressions revealing the associations between SNAP 

participation and county-level cost of living. SNAP participation was generally associated with 

living in a lower-cost county in these OLS models, subject to endogenous unobserved covariates 

such as frugality. Living in a lower-cost county is also associated with older age, male sex, Black 

race, Hispanic ethnicity, and being unemployed. Living in a higher-cost county was associated 

with having lower income, driving a farther distance to a primary food store, being less rural, 

having better food security, and having more availability of supermarkets, non-supermarkets, and 

full-service restaurants. Interestingly, a higher county-level cost of living was associated with 

WIC participation and a higher poverty rate and lower area-level prevalence of high school 
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graduation, which may reflect high inequality in high-cost counties. High-cost counties also had 

greater vehicle density and lower kitchen availability. 

 Table 9 presents the OLS regressions revealing associations between the interaction of 

SNAP participation and living in a high cost of living county. The interaction terms were 

negative for vegetables and protein, positive for fruits, grains, dairy, fats and oils, and added 

sugars. Negative interaction terms imply less food acquisition in that food category if a person is 

both on SNAP and lives in a high-cost county. The interaction term had a positive coefficient 

when regressed against overall HEI score, suggesting that SNAP would improve HEI scores 

more in a high-cost than in a lower-cost county, consistent with the endogenous treatment effects 

model result.  

Discussion 

Major findings 

 As poverty and economic inequality have been recognized as major social determinants 

of health, epidemiologists have increasingly sought to understand which social programs might 

best reduce these burdens. The Supplemental Nutrition Assistance Program (SNAP) remains one 

of the largest “safety nets” for low-income populations in the United States, and is well 

recognized for its role in reducing poverty and food insecurity (70). Yet some literature has also 

correlated SNAP participation to worse nutrition-related outcomes such as obesity. Such 

correlative findings may suffer from substantial methodological problems such as the failure to 

control for unobserved confounders that influence both participation in SNAP and nutritional 

quality, and misreporting of SNAP participation status in common nutritional datasets (19). In a 

recent Institute of Medicine review, an expert panel reviewing the SNAP program suggested that 
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further research should use improved methods and datasets to examine how SNAP currently 

affects nutritional quality and how it modifies the relationship between local food prices and 

nutritional quality; furthermore, the Institute of Medicine panel suggested that studies should 

evaluate how SNAP might be further improved to enhance its benefits to nutrition among low-

income Americans. One of these potential improvements is to adjust SNAP benefits for local 

food prices or cost of living, as it is believed that high local food prices and/or high costs of 

living (i.e., competing expenses such as rents) may exacerbate challenges in affording high 

nutrient-dense foods for low-income populations. SNAP benefits are not currently adjusted for 

local food prices or costs of living in the continental U.S. 

A practical limitation has prevented pursuit of the IOM panel’s suggested research 

objectives: the largest, nationally-representative dataset on food acquisition and nutrition quality 

(the National Health and Nutrition Examination Survey, NHANES) lacks reliable data on SNAP 

participation, and is not sufficiently geographically distributed to facilitate assessments of how 

variations in cost of living relate to the healthfulness of food acquisitions. The new National 

Household Food Acquisition and Purchase Survey (FoodAPS, 2012-2013) resolves these 

deficits, and facilitates inferences around the impact of SNAP on food acquisitions by sampling a 

nationally-representative group of administratively-confirmed SNAP participants, income-

eligible non-participants, and higher-income SNAP-ineligible non-participants. Here, we studied 

the FoodAPS dataset to understand how cost of living relates to the healthfulness of food 

acquisitions, how SNAP participation is related to cost of living, and the degree to which SNAP 

benefits have different relationships to nutritional quality in geographic areas with varying costs-

of-living, including varying food prices. We specifically measured cost of living using indices 
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that might be used in the future to adjust SNAP benefits for local food and living costs, including 

county-level regional price parities assembled by the U.S. Bureau of Economic Analysis, and 

county-level geographic adjustments to the Supplemental Poverty Threshold, assembled by the 

U.S. Census Bureau. 

 Using data on food equivalents acquired by food category, and a common metric of 

overall healthfulness of food acquisitions (the Healthy Eating Index, HEI, 2010 edition), we 

explored three key hypotheses relating the cost of living to the healthfulness of food acquisitions: 

(i) that a higher area-level cost of living would be associated with less healthy food acquisitions; 

(ii) that SNAP participation would be associated with living in a lower-cost area after accounting 

for other observed and unobserved covariates related to both SNAP and area of living; and (iii) 

that associations between SNAP participation and the healthfulness of food acquisitions would 

be moderated by area-level cost of living. We envisioned that higher cost of living would induce 

individuals to sacrifice food budgets for other costs such as rent, inducing less healthy food 

acquisitions. We also envisioned that because SNAP benefits are adjusted based on national 

average cost of living indices, the purchasing power of a SNAP dollar would be higher in a lower 

food-cost area and thereby induce living in lower-cost areas. Finally, we envisioned that the 

marginal impact of each dollar of SNAP benefits would be affected by area cost of living.  

Hypothesis 1: Cost of living and the healthfulness of food acquisitions 

 We found evidence consistent with our first hypothesis—that higher area-level cost of 

living was associated with less healthy food acquisitions. In particular, when we defined a high 

cost of living area as being more than one standard deviation above the mean cost measured by 

either a regional price parity or the geographic adjustment to the Supplemental Poverty Measure, 
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we found that living in a higher cost of living county was associated with significantly fewer 

acquisitions of vegetables, fruits, and whole grains, and was associated with significantly greater 

acquisitions of refined grains, dairy products, protein, fats and oils, and added sugars. This 

finding was consistent no matter which metric we chose for the area-level cost of living. Having 

controlled for individual-level factors such as education level, household-level factors such as 

income, and county-level factors such as food availability, the estimated effect of living in a 

high-cost county reduced the overall HEI score by approximately 11%. Clinically-speaking, the 

observed decrease in HEI is larger than reductions in HEI associated with a significant increase 

in the risk of cardiovascular disease, type II diabetes, and all-cause mortality. Hence, we would 

expect such effects are meaningful to public health.  

Importantly, we observed that the cost of living metric for food was not the most 

predictive of changes in the healthfulness of food acquisitions, perhaps because expenditures in 

other domains of the budget so substantially impact the food budget. For the overall nutritional 

metric of HEI score, higher rent costs were more strongly associated with reduced healthiness of 

food acquisitions than higher food costs when measured by county-level cost of living indices. 

As the food regional price parity was not significantly associated with a reduction in HEI score 

(because of the wide standard errors around the estimate), the food regional price parity may not 

capture whatever economic forces are leading to less healthy food acquisitions as well as the rent 

regional price parity or overall regional price parity. This is an important result for policymakers 

who may need to choose what metric of cost of living would be utilized if SNAP or related 

benefits were adjusted for cost of living. An increasing literature suggest that when rent prices 

are too high, very few funds remain available to low-income households to augment their SNAP 
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budget, and families become reliant on emergency food aid (11); hence, food prices are less 

useful as an indicator of food purchasing desperation when essentially no food can be purchased, 

and high rent prices may constitute the largest expenditure away from the food budget of the 

most vulnerable low-income households.  

Our further subgroup analyses examining the relationships between area-level cost of 

living and food acquisitions revealed that low-income (<185% of the federal poverty threshold) 

SNAP non-participants were the most sensitive subgroup affected by overall cost of living 

metrics, followed by SNAP participants and lastly by higher-income SNAP non-participants. 

This gradient across the three groups may suggest that greater income mitigates the relationship 

between area cost of living and the healthfulness of food acquisitions. The finding also suggests 

that SNAP may be effectively buffering individuals from the negative impacts of higher area-

level cost of living—a theory we return to when exploring the results of hypothesis 3, below.  

Hypothesis 2: SNAP and area-level cost of living 

We rejected our second hypothesis that SNAP would be associated with living in a lower-

cost area. While the ordinarily least squares regressions of SNAP against area-level cost of living 

revealed that SNAP participation was correlated to living in a lower-cost area, our main analysis 

employed endogeneous treatment effects models that attempted to estimate the effects of SNAP 

participation while reducing or eliminating unobserved or unmeasured confounders that produce 

endogeneity between SNAP and area-level cost of living. In these endogenous treatment effects 

models, we observed SNAP was associated with a higher probability of living in a high-cost 

county. One potential explanation for the finding is that SNAP participation increases economic 

mobility—by relieving budgets enough to allow low-income households to live in environments 
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where they would otherwise be “priced out” (11). Alternatively, the association may be due to 

reverse causality: that high-cost areas more quickly drain monthly budgets, increasing need for 

SNAP participation in order to make ends meet, such that SNAP participation is associated with 

living in high-cost areas. In exploring this hypothesis, it was notable that among the different 

measures of cost of living, the biggest treatment effect on the treated (estimated effect among 

those who were observed to be SNAP participants in the data) was from the food regional price 

parity. This finding is consistent with either explanatory mechanism, but further suggests that 

self-selection into SNAP enrollment is appropriately selecting households facing the greatest 

need from a food cost perspective, in that SNAP dollars are most likely to be spent in areas 

where they are most needed to afford food. 

Hypothesis 3: cost of living as a moderator of SNAP’s relationship to food acquisition 

 Our testing of our third hypothesis revealed that indeed county-level cost of living did 

moderate the relationship between SNAP and the healthiness of food acquisitions, but not in the 

expected direction. We anticipated that SNAP would be most beneficial to those living in lower-

cost areas, as each program dollar would be able to purchase more food in those areas, 

particularly foods that were of perceived or real higher costs (e.g., fruits and vegetables). Yet in 

fact SNAP had a neutral impact on the healthfulness of food acquisitions in lower-cost areas, 

because increased fruit and vegetable acquisitions and lower refined grain acquisitions, 

attributable to SNAP participation, were counterbalanced by increased acquisitions of fats and 

oils as well as added sugars. Overall, SNAP increased calories but did not disproportionately 

increase “healthy” calories; hence, SNAP had a statistically-neutral impact on HEI scores in 

lower-cost areas.  
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 By contrast, while individuals had a worse dietary profile in higher-cost areas, as 

discussed above, SNAP made a greater positive impact in such areas, by permitting greater 

acquisitions of vegetables and fewer refined grains, with less adverse compensation from 

increased fat and oil or added sugar acquisitions. One theory to explain these findings may be 

that in a higher-cost environment, SNAP dollars are used disproportionately to assist households 

in acquiring those foods that are most out of reach due to high perceived or real prices. The 

finding may also be a commentary on the nature of the food acquisition environment in lower-

cost counties; if lower-cost counties indeed have environments saturated with less-healthy foods 

as suggested in the public health literature (71), SNAP participation may have limited effects on 

the healthfulness of food acquisitions because the food environment dominates the purchasing 

patterns of participants, whereas higher-cost areas may have somewhat healthier food 

availability. We discuss further assessments of this theory in our discussion of future research 

studies, below. 

Contribution to the existing literature 

 Substantial existing literature in the fields of sociology, economics, and epidemiology has 

highlighted the trade-offs that low-income Americans face when attempting to pay for foods. 

While prior literature has documented trade-offs between energy costs, rent costs, medical care 

costs and food (2,3,72), our study adds the additional dimension of assessing how costs-of-living 

among low-income Americans relate to the healthfulness of food acquisitions, and the impact of 

the largest nutritional assistance program in the country. To our knowledge, this is the first 

assessment to use nationally-representative survey data to understand how broad costs of living 

across the country relate to the healthfulness of food acquisitions nationally. Other surveys, such 
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as NHANES, have not collected or provided access to sufficient geocoded information for such 

analyses. Our analysis provides the important insight that lower-income populations may be 

particularly vulnerable to less healthy food acquisitions when they face high costs-of-living, at 

least when they are not enrolled in SNAP. Furthermore, costs of food in a county are not the 

only—or even the best—metric of which costs-of-living are associated with less healthy food 

acquisitions. Rather, rent and other housing costs appear to be a particularly influential factor in 

influencing the healthfulness of food acquisitions, concordant with literature suggesting that 

housing-related costs are a major source of stress and financial constraint among low-income 

households. Interestingly, there was only a 65% correlation between the rent regional price parity 

and the food regional price parity among all counties in the sample. 

It is notable that in our study of the FoodAPS dataset, the analytical sample of low-

income non-participants who are theoretically eligible for the SNAP program had a lower 

income that did SNAP participants. This finding is contrary to the idea that eligible persons who 

fail to participate in SNAP are those who are minimally-qualified based on income, and who 

would receive the fewest benefits (i.e., rendering them less motivated to receive benefits, since 

the burden of enrollment exceeds the benefits of enrollment). By contrast, our findings suggest 

that eligible non-participants may include the extreme poor, and more rural, White, low-salaried 

employed persons, whose food acquisitions are disproportionately less healthy in higher cost of 

living areas. Notably, extensive emerging public health literature indicates that this demographic 

group has experienced declines in life expectancy associated with numerous financial and social 

hardships, and associated chronic diseases that include nutritional and psychiatric conditions 

related to food insecurity and chronic deprivation. Hence, our findings may indicate that 
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outreach to eligible but un-enrolled participations, to buffer them from the adverse nutritional 

effects of living in higher cost of living areas. 

Furthermore, our study is unique in utilizing the FoodAPS dataset, which offers the 

opportunity to identify SNAP participants who are administratively-confirmed participants in the 

program. Other surveys such as NHANES are known to mis-identify such participants (19), 

likely due to the stigma of identification and confusion or lack of awareness of benefits received 

by an individual  or other household members, which prevents accurate assessments of program 

impact. Our findings reveal that SNAP participation may serve as a buffer from the adverse 

effects of high cost of living on healthful food acquisitions, being particularly beneficial to those 

individuals who live in high-cost counties. A large literature in the sociology discipline has 

pointed to the benefits of living in lower-poverty areas that typically have higher area-level cost 

of living. Mostly commonly cited is the Moving to Opportunity Study, in which households 

randomized to a voucher program permitting movement to a lower-poverty neighborhood 

experienced subsequent clinically-meaningful reductions in the risk of obesity and type II 

diabetes as well as some associated mental health benefits (73,74). Given the rich literature 

supporting the poverty-reducing effects of SNAP, our results suggesting that SNAP’s effects 

include improving the ability to live in—and consume healthier foods in—higher-cost areas may 

be part of the pathway by which SNAP improves both economic and health mobility. 

Another key contribution to the literature from our study is the finding that SNAP may be 

associated, in ordinarily least square regressions, with poorer nutrition, but endogenous treatment 

effects models to detect the effects of SNAP while reducing or eliminating the impact of omitted 

variable bias did not reveal a negative impact of SNAP on nutrition in lower-cost areas and 
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revealed a positive impact of SNAP on nutrition in high-cost areas. This finding suggests that 

standard regressions and prior literature relying on such regressions to link SNAP participation 

to adverse nutritional outcomes such as obesity may be confounded by omitted variables that 

influence both SNAP participation and the likelihood of living in low-quality food environments 

or being predisposed to acquire less healthy foods.   

Limitations 

 Several notable limitations in our analysis are important to highlight. First, our data are 

from catalogued food acquisitions, not 24-hour dietary recalls. Food acquisitions may not reflect 

food consumption due to food wastage, which is particularly likely for foods that have very short 

shelf lives, such as vegetables and fruits, or those that have very long shelf lives and are 

consumed well after they are acquired or are stored rather than consumed, such as canned goods, 

solid fats and oils, or foods containing a high content of added sugars. Related to the issue of 

having food acquisitions catalogued rather than true food intake is the potential for missing data. 

We did not impute missing data as a low proportion of survey-based variables were missing; it is 

not possible to impute missing food acquisition data, since there is no strategy we are aware of to 

determine whether a respondent has failed to report a food acquisition. The data are also subject 

to observational effects in that a participating individual may have changed their food acquisition 

patterns due to participation in the study.  

A further limitation of our analysis is the assumption that household members consume 

an equal portion of the food acquired at the household level, which is particularly unlikely for 

households with children. We computed average food acquisitions per person per day from 

seven-day food diaries catalogued among all respondents in a household. We chose to perform 
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our regressions on individual-level food acquisitions both to assess the face validity of our 

statistics—which were highly concordant to estimates of food consumption in NHANES, despite 

FoodAPS being a record of food acquisition rather than consumption—and to provide 

interpretable regression coefficients that are comparable to the broader nutrition epidemiology 

literature, which catalogues consumption of food at an individual level. Nevertheless, dividing 

total household acquisitions among those persons who participated in a given food acquisition 

“event” (e.g., a meal) will not capture important within-household inequalities in food 

acquisition, which may be particularly important for understanding differences in the 

healthfulness of food acquisitions between children and adults.  

An additional limitation is that we utilized data on costs geocoded to the county level, not 

individual, household or local neighborhood-area levels. Our choice of this geographic level was 

dictated by the availability of cost of living metrics that are routinely updated and would be the 

most likely indices for adjustment of SNAP benefits in the future if such adjustments were to be 

instituted. We also controlled for county-level covariates because this was the smallest area level 

for which we possessed numerous variables of interest concerning the neighborhood 

environment and population. Furthermore, recent data including data from FoodAPS reveal that 

Americans typically travel significant distances to their primary food store, even among the 

lowest-income populations (4); hence, local neighborhood-area prices may be from areas that are 

not sufficiently wide to account for the distribution of prices for goods and services faced by 

most households.  

Implications for future research 

 Our findings and the limitations of our current analysis prompt several future research 
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pathways. First, understanding the mechanisms behind some of our findings will be important, as 

our findings were not concordant with many of our a priori hypotheses. In particular, 

understanding the mechanisms by which SNAP participation is associated with living in a 

higher-cost area would be important to understanding the economic mobility implications of the 

program. Furthermore, why SNAP participation was associated with healthier food acquisitions 

in higher-cost counties will be important to explain to understand how individuals and household 

choose to utilize nutrition assistance benefits. This may require further analysis of local and 

store-specific prices and availability of food products. At the time of this writing, FoodAPS 

developers are still building linkages between the dataset and external data from geocoded store 

datasets to assemble store-level and neighborhood-level food basket costs, which may be more 

refined than our county-level price indices in defining local prices, and should be paired with 

indices of food availability to understand how consumers make food acquisitions choices in 

different environments.  

 Given that our endogenous treatment effects models did not find adverse effects of SNAP 

on nutritional indicators, older studies using standard regressions to link SNAP to adverse 

chronic disease outcomes such as obesity should be revisited. Our findings indicate that the links 

between SNAP and adverse health conditions may have been driven by endogeneity from 

omitted variable bias, which has important implications for program evaluation and to 

understanding what mechanisms may be best for improving the nutritional benefits of SNAP and 

related food assistance programs. Our findings suggest that the program benefits themselves may 

be less related to unhealthy food acquisitions than the food environment in which participants 

live. 
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Implications for policy 

 Our study intended to shed light on the issue of whether SNAP benefits could improve 

the healthfulness of food acquisitions if they were adjusted using locally-based (county-level) 

indices of cost of living, rather than national average living cost data. Our study would have 

provided a clearer indication that such adjustments would be beneficial if our findings had been 

consistent with our hypothesis that SNAP benefits to nutritional metrics were larger in lower-

cost areas than in higher-cost areas. Yet our findings were contrary to this hypothesis. We found 

that SNAP was associated with improved nutrition more in higher-cost counties than in lower-

cost counties, with our leading theory for this finding being that food environments in lower-cost 

counties permitted greater acquisition of fats and oils and added sugars with SNAP benefits. 

Hence, our findings do not necessarily imply that a cost of living adjustment using currently 

available county-level cost of living metrics would improve the healthfulness of food 

acquisitions among SNAP participants currently living in lower-cost areas. However, our 

findings do imply that SNAP participation itself is associated with a higher probability of living 

in a higher-cost area, and improves nutrition in those areas; hence, via this more circuitous 

pathway, it is possible that adjusting SNAP benefits for county-level cost of living may improve 

nutrition. The sociology literature in particular suggests that higher-cost areas that are typically 

lower in poverty may have substantial health benefits for low-income individuals who move to 

such areas. Hence, any economic mobility benefits of SNAP might be enhanced though cost of 

living adjustments; conversely, however, if SNAP benefits are reduced by cost of living 

adjustments among those populations living in lower-cost areas, it is possible that SNAP 

participation would no longer have a neutral impact, but have a negative impact, if such benefits 
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become disproportionately used on fats and oils or added sugars, for example. A direct 

experiment or pilot study involving cost-adjusted SNAP benefits may be the most definitive 

strategy for identifying the effects of benefit modification for living costs.  

 Regardless of whether benefits are adjusted, we found that it was unlikely for food cost 

metrics alone to sufficiently capture the key cost of living factors that drive the relationship 

between area cost of living and the healthfulness of food acquisitions among low-income 

Americans. Rather, we found that overall cost of living indices, and particularly indices strongly 

driven by rent and housing costs, were often more significantly related to the healthfulness of 

food acquisitions than were food cost indices. Hence, the economic trade-offs taking place 

within low-income households that affect the healthfulness of what the food budget is spent on 

may be critically driven by large expenditures such as housing. This finding calls for an 

expansion of what data are utilized to consider the value of benefits and the influences of 

economic factors on the benefits of nutrition assistance programs and other safety nets targeting 

low-income Americans. 

Conclusions 

By linking data from the National Household Food Acquisition and Purchase Survey 

(FoodAPS) to data on county-level cost of living, we found that higher area-level cost of living 

was associated with less healthy food acquisitions. Additionally, we found that SNAP 

participation was associated with a higher probability of living in a high-cost county, net of 

individual, household, and county-level covariates; SNAP participation was also associated with 

a significant improvement in the healthfulness of food acquisitions in high-cost counties, but had 

a neutral impact in lower-cost counties.  
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Figures and Tables 

Table 1: Descriptive statistics of participants in the National Household Food Acquisition and Purchase Survey (2012-2013) by 

Supplemental Nutrition Assistance Program (SNAP) participation status and income level. The Stata commands svy, subpop were applied 

to data from each subpopulation (SNAP participants, non-participants <185% of the federal poverty level, and non-participants >=185% 

of the federal poverty level) to adjust estimates for stratification and clustering, and to apply sample weights. 95% confidence intervals 

are provided in parentheses for continuous variables. FPL: federal poverty threshold level. 

Characteristic Definition/units SNAP participants Non-participants <185% 
FPL 

Non-participants >=185% 
FPL 

Household sample size Number of households  1,581 1,391 1,852 

Individual sample size Number of individuals  5,414 3,863 5,036 

Weighted individual 
sample size 

Population represented 51,642,828 61,670,710 186,959,075 

Age Years 30.0 (2.0-67.0) 37.5 (4.0-78.0) 38.9 (4.0-72.0) 

Older adults % Age >=65 years 5.9 15.9 13.0 

Sex % Female 53.6 53.7 51.3 

White race % White 63.0 75.4 83.3 

Black race % Black 26.7 15.3 9.8 

Hispanic ethnicity % Hispanic 31.2 27.8 12.2 

Education % Completed high-school 47.5 58.9 73.3 

Employment % Employed (1=yes) 28.9 34.3 55.9 

Household size Number of non-guest 
residents 

4.2 (1.0-9.0) 3.6 (1.0-8.0) 3.1 (1.0-6.0) 

Income Total income as % of 
federal poverty threshold 
for household size 

138.6 (0.0-357.0) 100.8 (0.0-180.0) 503.9 (206.0-1048.0) 

Housing cost Household’s monthly 
rent/mortgage expense, $ 

577.1 (0.0-1500.0) 720.6 (0.0-2000.0) 1,014 (0.0-2400.0) 

Distance to primary food 
store 

Miles, Euclidean distance 3.1 (0.2-13.3) 3.5 (0.2-14.3) 3.9 (0.4-14.1) 
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Rural residence residence % Rural residence 22.7 27.5 35.4 

Food security status % low or very low food 
security on USDA 30-day 
Adult Food Security Scale 

42.7 31.9 6.9 

WIC % households with a 
member participating in 
the Women, Infants and 
Children program 

22.4 14.1 3.0 

Supermarkets Per 1,000 people, in 
county of residence 

12.0 (6.1-21.4) 11.8 (6.4-21.4) 12.1 (6.7-21.7) 

Non-supermarkets (non-
supermarket  food 
retailer) 

Per 1,000 people, in 
county of residence 

28.4 (13.3-52.8) 25.8 (9.7-51.5) 23.4 (7.1-44.0) 

Full-service restaurants 
(“sit down” table service) 

Per 1,000 people, in 
county of residence 

74.0 (42.1-111.0) 78.6 (41.2-142.4) 82.1 (45.3-142.4) 

Limited-service 
restaurants (“fast food”) 

Per 1,000 people, in 
county of residence 

69.2 (34.8-88.4) 69.4 (42.1-91.0) 69.6 (42.1-91.0) 

Poverty rate % of people below poverty 
threshold, in county of 
residence 

16.2 (9.6-25.8) 15.6 (7.7-23.6) 13.8 (6.6-21.8) 

Area-level household 
income 

Median, in county of 
residence (2012 inflation-
adj $) 

50,360 (32,960-78,187) 52,825 (35,093-81,093) 55,405 (36,875-87,751) 

Area-level educational 
attainment 

% of population 25+ years 
old with high school 
education 

84.7 (73.9-92.6) 84.0 (75.6-92.8) 87.0 (75.4-94.5) 

Vehicle density % of occupied housing 
units with at least one 
vehicle available 

91.6 (82.3-95.8) 92.1 (82.3-96.8) 93.0 (86.4-97.1) 

Kitchen availability % of occupied housing 
units with complete 
kitchen facilities available 

99.1 (98.3-99.6) 99.0 (98.3-99.7) 99.1 (98.3-99.6) 
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Regional price parity, 
overall 

Overall cost of living, 
relative to national 
average (100% = average) 

97.6 (89.6-1.21) 100.4 (89.6-122.2) 99.3 (89.6-121.4) 

Regional price parity, rents Rent/mortgage costs, 
relative to national 
average (100% = average) 

95.8 (65.4-156.7) 103.8 (70.6-181.3) 102.4 (70.6-181.3) 

Regional price parity, food Food costs, relative to 
national average (100% = 
average) 

98.7 (94.9-112.3) 100.1 (94.9-112.3) 100.0 (84.8-112.3) 

Regional price parity, all 
goods 

Cost of goods, relative to 
national average (100% = 
average) 

98.8 (95.0-108.9) 99.8 (95.0-108.9) 99.3 (92.6-108.9) 

Regional price parity, all 
services 

Cost of services, relative to 
national average (100% = 
average) 

98.1 (88.4-119.0) 100.2 (88.4-119.0) 98.7 (88.4-119.0) 

Geographic adjustment to 
Supplemental Poverty 
Measure 

Gross rents for two-
bedroom apartments with 
complete Kitchen 
availability and plumbing, 
relative to national 
average (100% = average) 

98.6 (75.3-155.9) 104.6 (75.6-166.9) 103.8 (75.6-166.9) 
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Table 2: Food acquired at home and away from home among participants in the National Household Food Acquisition and Purchase Survey (2012-

2013) by Supplemental Nutrition Assistance Program (SNAP) participation status and income level. The Stata commands svy linearized, subpop were 

applied to data from each subpopulation (SNAP participants, non-participants <=185% of the federal poverty level, and non-participants >185% of the 

federal poverty level) to adjust estimates for stratification and clustering, and to apply sample weights. Acquisitions are expressed both in grams per 

household per week in each food category and food pattern equivalents (e.g., cup-equivalents, ounce-equivalents) per household per week. 

Acquisitions per person per day were calculated by dividing the amount of food acquired by each respondent by the reported number of persons 

among whom that food was shared. Standard errors are provided in parentheses. FPL: federal poverty threshold level. FPE: food pattern equivalents. 

Food category Household level food acquisitions Person level food acquisitions FPE 
units in grams/week in FPE/week in grams/day in FPE/day 

SNAP 
partic
ipants 

Non-
participan
ts 
<=185% 
FPL 

Non-
participa
nts 
>185% 
FPL 

SNAP 
partic
ipants 

Non-
participan
ts 
<=185% 
FPL 

Non-
participa
nts 
>185% 
FPL 

SNAP 
partic
ipants 

Non-
participan
ts 
<=185% 
FPL 

Non-
participa
nts 
>185% 
FPL 

SNAP 
partic
ipants 

Non-
participa
nts 
<=185% 
FPL 

Non-
particip
ants 
>185% 
FPL 

Vegetables 7800 
(351) 

6628 
(317) 

7371 
(239) 

35.1 
(2.0) 

29.8 (1.4) 34.4 (1.4) 334 
(19) 

389 (19) 414 (13) 1.5 
(0.1) 

1.8 (0.1) 2.0 (0.1) Cup-
eq 

Fruits 7014 
(573) 

4722 
(365) 

5078 
(255) 

18.9 
(1.3) 

15.6 (1.2) 17.0 (0.9) 290 
(24) 

256 (20) 282 (16) 0.8 
(0.1) 

0.9 (0.1) 0.9 (0.1) Cup-
eq 

Whole grains 1690 
(168) 

1178 
(105) 

1247 (58) 24.9 
(6.0) 

15.6 (1.5) 20.4 (2.0) 66 (5) 62 (6) 68 (4) 0.9 
(0.1) 

0.9 (0.1) 1.2 (0.1) Oz-eq 

Refined grains 8536 
(484) 

6228 
(348) 

6854 
(243) 

170.3 
(11.9) 

121.9 
(8.5) 

128.2 
(4.9) 

361 
(20) 

335 (16) 370 (15) 7.1 
(0.4) 

6.5 (0.3) 7.0 (0.4) Oz-eq 

Dairy 10377 
(398) 

8082 
(472) 

8966 
(357) 

42.4 
(2.2) 

33.4 (1.9) 38.3 (2.1) 439 
(21) 

436 (22) 485 (18) 1.8 
(0.1) 

1.9 (0.1) 2.0 (0.1) Cup-
eq 

Protein 8529 
(463) 

5858 
(256) 

6774 
(233) 

121.8 
(6.3) 

81.7 (3.8) 97.2 (3.9) 369 
(20) 

337 (19) 381 (13) 5.5 
(0.3) 

4.8 (0.2) 5.6 (0.3) Oz-eq 

Fats and oils 18089 
(624) 

13113 
(626) 

14580 
(417) 

1664 
(97) 
 

1102 (60) 1266 (57) 780 
(39) 

747 (36) 804 (26) 72.1 
(4.4) 

67.0 
(4.7) 

71.1 
(4.0) 

Gram
s 

Added sugars 21550 
(1054
) 

14212 
(817) 

15983 
(764) 

747 
(58) 

432 (32) 480 (35) 941 
(48) 

749 (35) 884 (45) 31.4 
(2.4) 

23.0 
(1.4) 

25.9 
(1.9) 

Tsp-
eq 

Total 
kcals/person/d
ay 

- - - - - - - - - 2588 
(122) 

2336 
(114) 

2567 
(105) 

Kcals 
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Table 3: Comparison of food acquisition estimates from the National Household Food Acquisition and Purchase Survey (2012-2013) by 

Supplemental Nutrition Assistance Program (SNAP) participation status and income level to independent estimates of food consumption 

from the National Health and Nutrition Examination Survey (2007-2010) and U.S. National Dietary Guidelines (2015-2020). The Stata 

commands svy linearized, subpop were applied to data from each subpopulation (SNAP participants, non-participants <=185% of the 

federal poverty level, and non-participants >185% of the federal poverty level) to adjust estimates for stratification and clustering, and 

to apply sample weights. FPE: food pattern equivalents. Standard errors in parentheses. HEI: Healthy Eating Index, 2010. 

Food category Acquisitions in food pattern equivalents/day, National 
Food Acquisition and Purchasing Survey (2012-2013) 

Consumption in 
food pattern 
equivalents/day, 
National Health 
and Nutrition 
Examination 
Survey (2007-
2010) 

National Dietary 
Guidelines (2015-
2020), for 
sedentary 
persons Age 40 
yrs w/ a mean 
recommended 
caloric intake 
(2,200 kcal/day) 

FPE units 

SNAP 
participants 

Non-participants 
<=185% FPL 

Non-participants 
>185% FPL 

All persons All persons 

Vegetables 1.5 (0.1) 1.8 (0.1) 2.0 (0.1) 1.5 (0.02) 3.0 Cup-eq 

Fruits 0.8 (0.1) 0.9 (0.1) 0.9 (0.1) 1.1 (0.03) 2.0 Cup-eq 

Whole grains 0.9 (0.1) 0.9 (0.1) 1.2 (0.1) 0.8 (0.02) 3.5 Oz-eq 

Refined grains 7.1 (0.4) 6.5 (0.3) 7.0 (0.4) 5.5 (0.06) 3.5 Oz-eq 

Dairy 1.8 (0.1) 1.9 (0.1) 2.0 (0.1) 1.8 (0.03) 3.0 Cup-eq 

Protein 5.5 (0.3) 4.8 (0.2) 5.6 (0.3) 5.7 (0.07) 6.0 Oz-eq 

Fats and oils 72.1 (4.4) 67.0 (4.7) 71.1 (4.0) 56.8 (0.7) 29.0 Grams 

Added sugars 31.4 (2.4) 23.0 (1.4) 25.9 (1.9) 16.8 (0.3) 13.8 Tsp-eq 

HEI score 54.4 (0.2) 54.7 (0.2) 55.0 (0.1) 55.4 (0.7) 100 Scale 0 (worst) to 
100 (best) 
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Table 4: Average effect of living in a high‐cost area (at least one standard deviation above the 

mean national cost) on food acquisitions and overall Healthy Eating Index (HEI) scores. Cost of 

living is measured by regional price parities (RPPs), either overall, or by category of expenditure 

(rent, food, all goods, or all services); the geographic adjustment to the Supplemental Poverty 

Measure is provided as an alternative cost‐of‐living metric. Estimates of average effect are 

based on an endogenous treatment effects model applied to data from participants in the 

National Household Food Acquisition and Purchase Survey (2012‐2013). All regressions control 

for individual‐, household‐, and county‐level factors detailed in the text. Standard errors in 

parentheses. FPE: food pattern equivalents. RPP: regional price parity. 

Metric of cost‐of‐
living 

Food category Calor
ies 

HEI score

Vege
table
s 

Fruits  Wh
ole 
grai
ns 

Refi
ned 
grai
ns 

Dair
y 

Prot
ein 

Fats 
and 
oils 

Add
ed 
suga
rs 

  Units

Cup‐
eq 

Cup‐
eq 

Oz‐
eq 

Oz‐
eq 

Cup‐
eq 

Oz‐
eq 

Gra
ms 

Tsp‐
eq 

Kcals
/pers
on/d
ay 

Scale from 
0 (worst) 
to 100 
(best) 

Overall cost of 
living (RPP) 

‐0.65 
(0.04
)*** 

‐0.14 
(0.02)
*** 

‐
0.11 
(0.0
3)** 

2.35 
(0.1
2)**
* 

0.28 
(0.0
4)**
* 

0.86 
(0.1
1)**
* 

36.6
3 
(1.89
)*** 

9.40 
(0.84
)*** 

542.9
2 
(45.6
0)*** 

‐6.0 
(0.9)*** 

Rent cost (RPP)  ‐0.65 
(0.04
)*** 

‐0.14 
(0.02)
*** 

‐
0.11 
(0.0
3)** 

2.35 
(0.1
2)**
* 

0.28 
(0.0
4)**
* 

0.86 
(0.1
1)**
* 

36.6
3 
(1.89
)*** 

9.40 
(0.84
)*** 

542.9
2 
(45.6
0)*** 

‐6.0 
(0.9)*** 

Food cost (RPP)  ‐0.41 
(0.04
)*** 

‐0.17 
(0.02)
*** 

‐
0.06 
(0.0
4) 

2.68 
(0.1
3)**
* 

0.33 
(0.0
4)**
* 

0.64 
(0.1
2)**
* 

31.7
4 
(1.40
)*** 

9.63 
(0.66
)*** 

471.5
0 
(40.9
1)*** 

‐1.4 (1.0)

All goods (RPP)  ‐0.34 
(0.03
)***
* 

‐0.10 
(0.01)
*** 

0.38 
(0.0
4)**
* 

2.67 
(0.1
1)**
* 

0.24 
(0.0
3)**
* 

1.38 
(0.1
0)**
* 

43.4
5 
(1.97
)*** 

11.5
4 
(0.82
)*** 

884.5
4 
(66.8
4)*** 

‐4.5 
(0.8)*** 

All services (RPP)  ‐0.35 
(0.03
)*** 

‐0.11 
(0.02)
*** 

0.36 
(0.0
4)**
* 

2.80 
(0.1
2)**
* 

0.34 
(0.0
4)**
* 

1.10 
(0.1
0)**
* 

45.0
7 
(2.46
)*** 

16.1
5 
(1.05
)*** 

869.2
2 
(73.1
8)*** 

‐4.1 
(0.8)*** 

Geographic 
adjustment to 
Supplemental 
Poverty Measure 

‐0.67 
(0.04
)*** 

‐0.18 
(0.02)
*** 

‐
0.05 
(0.0
4) 

3.05 
(0.1
3)**
* 

0.36 
(0.0
4)**
* 

1.35 
(0.1
1)**
* 

47.7
1 
(2.11
)*** 

12.5
7 
(0.92
)*** 

766.3
5 
(52.1
0)*** 

‐2.1 (0.9)*

* = p<0.05; ** = p<0.01; *** = p<0.001 
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Table 5: Average treatment effect of SNAP participation on the probability of living in a high‐cost 

area (at least one standard deviation above the mean national cost). Cost of living is measured 

by regional price parities (RPPs), either overall, or by category of expenditure (rent, food, all 

goods, or all services); the geographic adjustment to the Supplemental Poverty Measure is 

provided as an alternative cost‐of‐living metric. Estimates of average effect are based on an 

endogenous treatment effects model applied to data from participants in the National 

Household Food Acquisition and Purchase Survey (2012‐2013). All regressions control for 

individual‐, household‐, and county‐level factors detailed in the text. Standard errors in 

parentheses. FPE: food pattern equivalents. 

 

Cost‐of‐living 
metric 

Average treatment effect  Average treatment effect on the 
treated 

Probability of 
living in high‐
cost county 
given non‐
participant in 
SNAP  

Increased 
probability given 
SNAP 
participation 

Probability of 
living in high‐
cost county 
given non‐
participant in 
SNAP 

Increased 
probability given 
SNAP 
participation 

Overall regional 
price parity 

0.20 (0.01)***  0.44 (0.01)***  0.00 (0.00)***  0.22 (0.00)*** 

Rent regional 
price parity 

0.20 (0.01)***  0.44 (0.01)***  0.00 (0.00)***  0.22 (0.00)*** 

Food regional 
price parity 

0.27 (0.02)***  0.39 (0.02)***  0.00 (0.01)  0.24 (0.01)*** 

Goods regional 
price parity 

0.26 (0.02)***  0.40 (0.02)***  0.01 (0.00)*  0.22 (0.00)*** 

Services regional 
price parity 

0.20 (0.01)***  0.43 (0.01)***  0.00 (0.00)***  0.22 (0.00)*** 

Geographic 
adjustment to the 
Supplemental 
Poverty Measure 

0.27 (0.02)***  0.36 (0.02)***  0.08 (0.03)**  0.17 (0.02)*** 

*=p<0.05, **=p<0.01,  ***=p<0.001 
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Table 6. Interactions between SNAP participation, cost of living, and food acquisitions. 

Coefficients for each food category are in units of food pattern equivalents (e.g., cup‐

equivalents, ounce‐equivalents) as detailed in Table 2, whereas the Healthy Eating Index (HEI) is 

on a scale from 0 (worst) to 100 (best). 

 

(A) Average treatment effect 

Food category  Low‐cost area (Overall 
regional price parity) 

High‐cost area (Overall 
regional price parity) 

Acquisition 
if not 
participating 
in SNAP 

Change in 
acquisition 
if 
participating 
in SNAP 

Acquisition 
if not 
participating 
in SNAP 

Change in 
acquisition 
if 
participating 
in SNAP 

Vegetables  1.98 
(0.22)*** 

0.73 
(0.01)*** 

0.75 
(0.01)*** 

0.09 
(0.01)*** 

Fruits  0.63 
(0.07)*** 

0.31 
(0.00)*** 

0.17 (0.09)  0.01 (0.90) 

Whole grains  0.60 
(0.10)*** 

0.60 
(0.01)*** 

0.27 (0.23)  ‐0.03 (0.02) 

Refined grains  9.54 
(1.33)*** 

‐4.54 
(1.33)** 

2.86 
(0.07)*** 

‐1.49 
(0.08)*** 

Dairy  2.41 
(0.23)*** 

0.90 
(0.06)*** 

0.92 
(0.08)*** 

0.13 (0.08) 

Protein  4.27 
(0.53)*** 

2.71 
(0.17)*** 

1.80 
(0.01)*** 

1.12 
(0.03)*** 

Fats and oils  124.1 
(15.4)*** 

28.95 
(0.83)*** 

32.88 
(2.92)*** 

9.53 
(2.95)** 

Added sugars  9.76 
(0.08)*** 

9.29 
(0.39)*** 

9.35 
(0.10)*** 

7.14 
(0.18)*** 

Kcals/person/day  1232.30 
(49.27)*** 

1167.4 
(90.45)*** 

958.58 
(12.47)*** 

517.83 
(17.23)*** 

HEI score  54.48 
(0.74)*** 

‐0.51 (0.76)  40.67 
(1.04)*** 

19.77 
(1.68)*** 

*=p<0.05, **=p<0.01, ***=p<0.001   
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(B) Average treatment effect on the treated 

Food category  Low‐cost area (Overall 
regional price parity)  

High‐cost area (Overall 
regional price parity) 

Acquisition 
if not 
participating 
in SNAP 

Change in 
acquisition 
if 
participating 
in SNAP 

Acquisition 
if not 
participating 
in SNAP 

Change in 
acquisition 
if 
participating 
in SNAP 

Vegetables  1.32 
(0.02)*** 

0.05 
(0.02)** 

1.48 
(0.02)*** 

0.05 
(0.02)** 

Fruits  0.67 
(0.01)*** 

0.03 
(0.00)*** 

0.03 (0.02)  0.00 (0.01) 

Whole grains  0.10 (0.29)  0.01 (0.03)  0.49 (0.42)  ‐0.05 (0.04) 

Refined grains  11.63 
(2.24)*** 

‐4.81 
(2.24)* 

7.61 
(0.12)*** 

0.26 (0.13) 

Dairy  1.49 
(0.10)*** 

0.32 
(0.10)** 

1.59 
(0.14)*** 

0.31 (0.14)* 

Protein  3.51 
(0.28)*** 

1.51 
(0.28)*** 

5.27 
(0.04)*** 

0.01 
(0.00)** 

Fats and oils  63.44 
(1.40)*** 

6.62 
(1.35)*** 

65.05 
(5.13)*** 

11.63 (5.81) 

Added sugars  26.07 
(0.16)*** 

0.45 
(0.08)*** 

29.80 
(0.23)*** 

0.00 (0.01) 

Kcals/person/day  1833.17 
(82.95)*** 

560.44 
(82.36)*** 

2626.21 
(23.15)*** 

31.35 
(16.31) 

HEI score  54.44 
(1.25)*** 

‐0.32 (1.25)  29.43 
(1.88)*** 

25.13 
(0.02)*** 

*=p<0.05, **=p<0.01, ***=p<0.001 
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Table 7: Ordinary least squares regressions testing hypothesis 1: that increased cost of living is 

associated with less healthy food acquisitions. Subtables (A)‐(H) correspond to food pattern 

equivalents of food categories 1 through 8 (vegetables through added sugars) as the outcome 

(in food patterns equivalent units), while subtable (I) corresponds to kilocalories per person per 

day as the outcome and (J) corresponds to the Healthy Eating Index as the outcome. All 

regressions include survey sample weights to account for differential sampling and response. * = 

p<0.05; ** = p<0.01; *** = p<0.001 

 

(A)  

Covariate  Change in acquisition of vegetables 

Cost of living 
metric 

Overall 
RPP 

Rent 
RPP 

Food 
RPP 

Good 
RPP 

Services 
RPP 

Geographic adjustment 
to the Supplemental 
Poverty Measure 

Cost of living  ‐0.1097 
(0.0117
)*** 

‐0.1097 
(0.0117
)*** 

‐0.0727 
(0.0102
)*** 

‐0.0698 
(0.0112
)*** 

‐0.0765 
(0.0113
)*** 

‐0.069 (0.0114)*** 

Age  0.0288 
(0.001)
*** 

0.0288 
(0.001)
*** 

0.0289 
(0.001)
*** 

0.0289 
(0.001)
*** 

0.0289 
(0.001)
*** 

0.0289 (0.001)*** 

Age squared  ‐0.0002 
(0)*** 

‐0.0002 
(0)*** 

‐0.0002 
(0)*** 

‐0.0002 
(0)*** 

‐0.0002 
(0)*** 

‐0.0002 (0)*** 

Sex 
(1=female) 

0.1343 
(0.0085
)*** 

0.1343 
(0.0085
)*** 

0.1343 
(0.0085
)*** 

0.1341 
(0.0085
)*** 

0.1341 
(0.0085
)*** 

0.1342 (0.0085)*** 

White race  0.1015 
(0.0123
)*** 

0.1015 
(0.0123
)*** 

0.1055 
(0.0123
)*** 

0.1037 
(0.0123
)*** 

0.1034 
(0.0123
)*** 

0.1023 (0.0123)*** 

Black race  ‐0.1575 
(0.0158
)*** 

‐0.1575 
(0.0158
)*** 

‐0.1506 
(0.0158
)*** 

‐0.1522 
(0.0157
)*** 

‐0.1532 
(0.0157
)*** 

‐0.1562 (0.0158)*** 

Hispanic  ‐0.1757 
(0.012)
*** 

‐0.1757 
(0.012)
*** 

‐0.1652 
(0.0119
)*** 

‐0.1712 
(0.012)
*** 

‐0.1711 
(0.012)
*** 

‐0.1722 (0.012)*** 

Education >= 
high school 

‐0.1819 
(0.0111
)*** 

‐0.1819 
(0.0111
)*** 

‐0.1826 
(0.0111
)*** 

‐0.183 
(0.0111
)*** 

‐0.1832 
(0.0111
)*** 

‐0.1826 (0.0111)*** 

Employed 
(1=yes) 

‐0.0409 
(0.009)
*** 

‐0.0409 
(0.009)
*** 

‐0.0413 
(0.009)
*** 

‐0.0406 
(0.009)
*** 

‐0.0409 
(0.009)
*** 

‐0.0407 (0.009)*** 

Household 
size 

‐0.1872 
(0.0024
)*** 

‐0.1872 
(0.0024
)*** 

‐0.1876 
(0.0024
)*** 

‐0.1871 
(0.0024
)*** 

‐0.1873 
(0.0024
)*** 

‐0.187 (0.0024)*** 
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Income 
($/10^4) 

0.326 
(0.151)
* 

0.326 
(0.151)
* 

0.4 
(0.151)
* 

0.399 
(0.151)
** 

0.392 
(0.151)
** 

0.34 (0.151)* 

Housing cost 
($/10^4) 

0.717 
(0.036)
*** 

0.717 
().036)*
** 

0.725 
(0.0361
)**** 

0.716 
(0.036)
*** 

0.718 
(0.036)
*** 

0.714 (0.036)*** 

Distance to 
primary food 
store 

0.0086 
(0.001)
*** 

0.0086 
(0.001)
*** 

0.0085 
(0.001)
*** 

0.0087 
(0.001)
*** 

0.0087 
(0.001)
*** 

0.0088 (0.001)*** 

Rural 
residence 

0.1408 
(0.0115
)*** 

0.1408 
(0.0115
)*** 

0.136 
(0.0115
)*** 

0.136 
(0.0115
)*** 

0.1382 
(0.0116
)*** 

0.1333 (0.0115)*** 

Food security 
status 

‐0.0788 
(0.0092
)*** 

‐0.0788 
(0.0092
)*** 

‐0.0802 
(0.0092
)*** 

‐0.079 
(0.0092
)*** 

‐0.0786 
(0.0092
)*** 

‐0.0794 (0.0092)*** 

WIC  0.0405 
(0.0127
)** 

0.0405 
(0.0127
)** 

0.0383 
(0.0127
)** 

0.0383 
(0.0127
)** 

0.039 
(0.0127
)** 

0.0385 (0.0127)** 

Supermarket
s 

0.4258 
(0.1166
)*** 

0.4258 
(0.1166
)*** 

0.3119 
(0.1154
)** 

0.366 
(0.1167
)** 

0.3676 
(0.1165
)** 

0.3232 (0.1158)** 

Non‐
supermarkets 

‐0.6554 
(0.0446
)*** 

‐0.6554 
(0.0446
)*** 

‐0.6812 
(0.0444
)*** 

‐0.676 
(0.0445
)*** 

‐0.666 
(0.0447
)*** 

‐0.6839 (0.0444)*** 

Full‐service 
restaurants 

‐0.0424 
(0.0174
)* 

‐0.0424 
(0.0174
)* 

‐0.0474 
(0.0175
)** 

‐0.0557 
(0.0173
)** 

‐0.0523 
(0.0174
)** 

‐0.0512 (0.0175)** 

Limited‐
service 
restaurants 

‐0.1355 
(0.0348
)*** 

‐0.1355 
(0.0348
)*** 

‐0.11 
(0.0347
)** 

‐0.0945 
(0.0344
)** 

‐0.104 
(0.0346
)** 

‐0.107 (0.035)** 

Poverty rate  1.7455 
(0.1879
)*** 

1.7455 
(0.1879
)*** 

1.5159 
(0.188)
*** 

1.64 
(0.1875
)*** 

1.6397 
(0.1874
)*** 

1.6662 (0.1876)*** 

Area‐level 
household 
income 

0 
(0)*** 

0 
(0)*** 

0 (0)**  0 (0)**  0 
(0)*** 

0 (0)** 

Area‐level 
educational 
attainment 

‐1.1778 
(0.1094
)*** 

‐1.1778 
(0.1094
)*** 

‐1.096 
(0.1092
)*** 

‐1.0815 
(0.11)*
** 

‐1.1001 
(0.1099
)*** 

‐1.0663 (0.1096)*** 

Vehicle 
density 

0.7893 
(0.1587
)*** 

0.7893 
(0.1587
)*** 

0.6746 
(0.1582
)*** 

0.7238 
(0.1584
)*** 

0.744 
(0.1585
)*** 

0.75 (0.1587)*** 

Kitchen 
availability 

7.1063 
(1.2728
)*** 

7.1063 
(1.2728
)*** 

8.9548 
(1.2373
)*** 

9.0047 
(1.2451
)*** 

8.5776 
(1.2548
)*** 

8.4611 (1.2731)*** 
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SNAP 
participation 

‐0.0574 
(0.0093
)*** 

‐0.0574 
(0.0093
)*** 

‐0.0574 
(0.0093
)*** 

‐0.058 
(0.0093
)*** 

‐0.0577 
(0.0093
)*** 

‐0.0578 (0.0093)*** 

Intercept  ‐5.4052 
(1.2176
)*** 

‐5.4052 
(1.2176
)*** 

‐7.207 
(1.1815
)*** 

‐7.324 
(1.1889
)*** 

‐6.9144 
(1.1984
)*** 

‐6.8099 (1.2191)*** 

Observations  230,323  230,323 230,323 230,323 230,323 230,323

R‐squared  0.0698  0.0698 0.0696 0.0696 0.0696 0.0696
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(B) 

Covariates  Change in acquisition of fruits

Cost of living 
metric 

Overall RPP  Rent RPP Food RPP Good RPP Services RPP  Geographic 
adjustment to 
the 
Supplemental 
Poverty 
Measure 

Cost of living  0.0074 
(0.0052) 

0.0074 
(0.0052) 

0.0463 
(0.0045)*** 

0.0314 
(0.005)*** 

0.0186 
(0.005)*** 

0.0265 
(0.0051)*** 

Age  0.0017 
(0.0004)*** 

0.0017 
(0.0004)*** 

0.0017 
(0.0004)*** 

0.0017 
(0.0004)*** 

0.0017 
(0.0004)*** 

0.0017 
(0.0004)*** 

Age squared  0 (0)***  0 (0)*** 0 (0)*** 0 (0)*** 0 (0)***  0 (0)***

Sex (1=female)  0.0702 
(0.0038)*** 

0.0702 
(0.0038)*** 

0.0698 
(0.0038)*** 

0.0701 
(0.0038)*** 

0.0701 
(0.0038)*** 

0.07 
(0.0038)*** 

White race  0.0166 
(0.0055)** 

0.0166 
(0.0055)** 

0.0155 
(0.0055)** 

0.0166 
(0.0055)** 

0.0166 
(0.0055)** 

0.0171 
(0.0055)** 

Black race  ‐0.0155 
(0.007)* 

‐0.0155 
(0.007)* 

‐0.0175 
(0.007)* 

‐0.0163 
(0.007)* 

‐0.0158 
(0.007)* 

‐0.0147 
(0.007)* 

Hispanic  0.1373 
(0.0053)*** 

0.1373 
(0.0053)*** 

0.1381 
(0.0053)*** 

0.1403 
(0.0053)*** 

0.1385 
(0.0053)*** 

0.1401 
(0.0054)*** 

Education >= 
high school 

0.0741 
(0.005)*** 

0.0741 
(0.005)*** 

0.0738 
(0.005)*** 

0.0741 
(0.005)*** 

0.0742 
(0.005)*** 

0.074 
(0.005)*** 

Employed 
(1=yes) 

‐0.0835 
(0.004)*** 

‐0.0835 
(0.004)*** 

‐0.0825 
(0.004)*** 

‐0.0831 
(0.004)*** 

‐0.0833 
(0.004)*** 

‐0.0832 
(0.004)*** 

Household size  ‐0.0641 
(0.0011)*** 

‐0.0641 
(0.0011)*** 

‐0.0636 
(0.0011)*** 

‐0.064 
(0.0011)*** 

‐0.064 
(0.0011)*** 

‐0.064 
(0.0011)*** 

Income 
($/10^4) 

1.842 
(0.0672)*** 

1.852 
(0.0672)*** 

1.814 
(0.0672)*** 

1.822 
(0.0672)*** 

1.832 
(0.0672)*** 

1.847
(0.0671)*** 

Housing cost 
($/10^4) 

0.369 
(0.0161)*** 

0.369 
(0.0161)*** 

0.361 
(0.0161)*** 

0.368 
(0.0161)*** 

0.368 
(0.0161)*** 

0.368 
(0.0161)*** 

Distance to 
primary food 
store 

0.0141 
(0.0004)*** 

0.0141 
(0.0004)*** 

0.0143 
(0.0004)*** 

0.0141 
(0.0004)*** 

0.0141 
(0.0004)*** 

0.0141 
(0.0004)*** 

Rural 
residence 

‐0.0718 
(0.0051)*** 

‐0.0718 
(0.0051)*** 

‐0.0789 
(0.0051)*** 

‐0.0764 
(0.0051)*** 

‐0.0743 
(0.0052)*** 

‐0.0745 
(0.0051)*** 

Food security 
status 

‐0.1194 
(0.0041)*** 

‐0.1194 
(0.0041)*** 

‐0.119 
(0.0041)*** 

‐0.1197 
(0.0041)*** 

‐0.1196 
(0.0041)*** 

‐0.1194 
(0.0041)*** 

WIC  0.1215 
(0.0057)*** 

0.1215 
(0.0057)*** 

0.1204 
(0.0057)*** 

0.1208 
(0.0057)*** 

0.1211 
(0.0057)*** 

0.1209 
(0.0057)*** 

Supermarkets  0.2295 
(0.052)*** 

0.2295 
(0.052)*** 

0.1963 
(0.0514)*** 

0.1854 
(0.052)*** 

0.211 
(0.0519)*** 

0.2102 
(0.0516)*** 

Non‐
supermarkets 

0.0529 
(0.0199)** 

0.0529 
(0.0199)** 

0.0376 
(0.0198) 

0.0409 
(0.0198)* 

0.0457 
(0.0199)* 

0.0462 
(0.0198)* 

Full‐service 
restaurants 

‐0.0379 
(0.0078)*** 

‐0.0379 
(0.0078)*** 

‐0.0513 
(0.0078)*** 

‐0.043 
(0.0077)*** 

‐0.0406 
(0.0077)*** 

‐0.0437 
(0.0078)*** 

Limited‐service 
restaurants 

0.0576 
(0.0155)*** 

0.0576 
(0.0155)*** 

0.0926 
(0.0154)*** 

0.0736 
(0.0153)*** 

0.0658 
(0.0154)*** 

0.0751 
(0.0156)*** 

Poverty rate  0.6329 
(0.0837)*** 

0.6329 
(0.0837)*** 

0.7065 
(0.0837)*** 

0.6315 
(0.0835)*** 

0.6362 
(0.0835)*** 

0.6229 
(0.0836)*** 
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Area‐level 
household 
income 

0 (0)***  0 (0)*** 0 (0)*** 0 (0)*** 0 (0)***  0 (0)***

Area‐level 
educational 
attainment 

0.4898 
(0.0487)*** 

0.4898 
(0.0487)*** 

0.6222 
(0.0486)*** 

0.5702 
(0.049)*** 

0.5278 
(0.049)*** 

0.5494 
(0.0488)*** 

Vehicle density  0.2604 
(0.0707)*** 

0.2604 
(0.0707)*** 

0.2666 
(0.0705)*** 

0.2449 
(0.0706)** 

0.2508 
(0.0706)*** 

0.2383 
(0.0707)** 

Kitchen 
availability 

‐4.7157 
(0.5673)*** 

‐4.7157 
(0.5673)*** 

‐3.7175 
(0.5513)*** 

‐4.1097 
(0.5548)*** 

‐4.402 
(0.5591)*** 

‐4.0275 
(0.5673)*** 

SNAP 
participation 

0.0711 
(0.0041)*** 

0.0711 
(0.0041)*** 

0.0708 
(0.0041)*** 

0.0711 
(0.0041)*** 

0.071 
(0.0041)*** 

0.0711 
(0.0041)*** 

Intercept  4.6897 
(0.5427)*** 

4.6897 
(0.5427)*** 

3.5488 
(0.5264)*** 

4.017 
(0.5298)*** 

4.3503 
(0.534)*** 

3.9579 
(0.5432)*** 

Observations  230,323  230,323 230,323 230,323 230,323 230,323

R‐squared  0.0637  0.0637 0.0642 0.0639 0.0638 0.0639
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(C) 

Covariates  Change in acquisition of whole grains

Cost of living 
metric 

Overall RPP  Rent RPP Food RPP Good RPP Services RPP  Geographic 
adjustment to 
the 
Supplemental 
Poverty 
Measure 

Cost of living  0.1023 
(0.0152)*** 

0.1023 
(0.0152)*** 

‐0.025 
(0.0132) 

0.0143 
(0.0146) 

0.0271 
(0.0146) 

0.1105 
(0.0148)*** 

Age  0.01 
(0.0013)*** 

0.01 
(0.0013)*** 

0.0099 
(0.0013)*** 

0.0099 
(0.0013)*** 

0.0099 
(0.0013)*** 

0.01 
(0.0013)*** 

Age squared  ‐0.0001 
(0)*** 

‐0.0001 
(0)*** 

‐0.0001 
(0)*** 

‐0.0001 
(0)*** 

‐0.0001 
(0)*** 

‐0.0001 (0)***

Sex (1=female)  0.1478 
(0.011)*** 

0.1478 
(0.011)*** 

0.1485 
(0.011)*** 

0.1482 
(0.011)*** 

0.1482 
(0.011)*** 

0.1477 
(0.011)*** 

White race  ‐0.248 
(0.016)*** 

‐0.248 
(0.016)*** 

‐0.25 
(0.016)*** 

‐0.2504 
(0.016)*** 

‐0.2502 
(0.016)*** 

‐0.2475 
(0.016)*** 

Black race  ‐0.4635 
(0.0205)*** 

‐0.4635 
(0.0205)*** 

‐0.4664 
(0.0205)*** 

‐0.4675 
(0.0205)*** 

‐0.4674 
(0.0205)*** 

‐0.4627 
(0.0205)*** 

Hispanic  ‐0.3772 
(0.0156)*** 

‐0.3772 
(0.0156)*** 

‐0.3903 
(0.0155)*** 

‐0.3876 
(0.0156)*** 

‐0.3864 
(0.0156)*** 

‐0.374 
(0.0156)*** 

Education >= 
high school 

0.2145 
(0.0145)*** 

0.2145 
(0.0145)*** 

0.216 
(0.0145)*** 

0.2157 
(0.0145)*** 

0.2157 
(0.0145)*** 

0.2147 
(0.0145)*** 

Employed 
(1=yes) 

‐0.2536 
(0.0117)*** 

‐0.2536 
(0.0117)*** 

‐0.2555 
(0.0117)*** 

‐0.2546 
(0.0117)*** 

‐0.2544 
(0.0117)*** 

‐0.2531 
(0.0117)*** 

Household size  ‐0.0572 
(0.0031)*** 

‐0.0572 
(0.0031)*** 

‐0.0577 
(0.0031)*** 

‐0.0575 
(0.0031)*** 

‐0.0574 
(0.0031)*** 

‐0.0574 
(0.0031)*** 

Income 
($/10^4) 

0.212 (0.196)  0.212 (0.196) 0.193 (0.196) 0.172 (0.196) 0.169 (0.196) 0.213 (0.196)

Housing cost 
($/10^4) 

‐0.0259 
(0.0469) 

‐0.0259 
(0.0469) 

‐0.0163 
(0.0469) 

‐0.0218 
(0.0469) 

‐0.0241 
(0.0469) 

‐0.0254 
(0.0468) 

Distance to 
primary food 
store 

0.011 
(0.0013)*** 

0.011 
(0.0013)*** 

0.0105 
(0.0013)*** 

0.0107 
(0.0013)*** 

0.0108 
(0.0013)*** 

0.011 
(0.0013)*** 

Rural 
residence 

‐0.1037 
(0.015)*** 

‐0.1037 
(0.015)*** 

‐0.0826 
(0.0149)*** 

‐0.0898 
(0.015)*** 

‐0.0925 
(0.015)*** 

‐0.1037 
(0.0149)*** 

Food security 
status 

‐0.1999 
(0.012)*** 

‐0.1999 
(0.012)*** 

‐0.1992 
(0.012)*** 

‐0.1992 
(0.012)*** 

‐0.1995 
(0.012)*** 

‐0.1996 
(0.012)*** 

WIC  0.0789 
(0.0166)*** 

0.0789 
(0.0166)*** 

0.0838 
(0.0166)*** 

0.0826 
(0.0166)*** 

0.082 
(0.0166)*** 

0.0792 
(0.0166)*** 

Supermarkets  ‐0.1158 
(0.1517) 

‐0.1158 
(0.1517) 

0.0819 
(0.1501) 

0.0315 
(0.1518) 

0.0122 
(0.1515) 

‐0.0755 
(0.1506) 

Non‐
supermarkets 

0.1554 
(0.0579)** 

0.1554 
(0.0579)** 

0.2175 
(0.0577)*** 

0.2001 
(0.0579)** 

0.1913 
(0.0581)** 

0.1639 
(0.0577)** 

Full‐service 
restaurants 

0.522 
(0.0227)*** 

0.522 
(0.0227)*** 

0.5575 
(0.0227)*** 

0.5459 
(0.0226)*** 

0.5423 
(0.0226)*** 

0.5167 
(0.0227)*** 

Limited‐service 
restaurants 

‐0.9248 
(0.0453)*** 

‐0.9248 
(0.0453)*** 

‐1.0308 
(0.0451)*** 

‐0.9986 
(0.0447)*** 

‐0.9879 
(0.045)*** 

‐0.9103 
(0.0455)*** 



Food APS Research at UKCPR – Page 116 
 

Poverty rate  3.2654 
(0.2443)*** 

3.2654 
(0.2443)*** 

3.3496 
(0.2444)*** 

3.38 
(0.2438)*** 

3.3768 
(0.2438)*** 

3.3069 
(0.2439)*** 

Area‐level 
household 
income 

0 (0)***  0 (0)*** 0 (0)*** 0 (0)*** 0 (0)***  0 (0)***

Area‐level 
educational 
attainment 

1.2371 
(0.1422)*** 

1.2371 
(0.1422)*** 

0.8522 
(0.142)*** 

0.9819 
(0.1431)*** 

1.0223 
(0.143)*** 

1.2745 
(0.1424)*** 

Vehicle density  ‐3.6996 
(0.2063)*** 

‐3.6996 
(0.2063)*** 

‐3.5892 
(0.2057)*** 

‐3.6008 
(0.206)*** 

‐3.6156 
(0.2062)*** 

‐3.7151 
(0.2064)*** 

Kitchen 
availability 

6.5199 
(1.6552)*** 

6.5199 
(1.6552)*** 

2.2837 
(1.6091) 

3.3536 
(1.6191)* 

3.7907 
(1.6317)* 

6.8999 
(1.6553)*** 

SNAP 
participation 

0.0689 
(0.0121)*** 

0.0689 
(0.0121)*** 

0.0696 
(0.0121)*** 

0.0694 
(0.0121)*** 

0.0693 
(0.0121)*** 

0.0692 
(0.0121)*** 

Intercept  ‐5.6066 
(1.5834)*** 

‐5.6066 
(1.5834)*** 

‐1.1017 
(1.5364) 

‐2.2921 
(1.5461) 

‐2.7493 
(1.5584) 

‐6.0388 
(1.5851)*** 

Observations  230,323  230,323 230,323 230,323 230,323 230,323

R‐squared  0.0273  0.0273 0.0271 0.0271 0.0271 0.0273
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(D) 

Covariates  Change in acquisition of refined grains

Cost of living 
metric 

Overall RPP  Rent RPP Food RPP Good RPP Services RPP Geographic 
adjustment to 
the 
Supplemental 
Poverty 
Measure 

Cost of living  0.5461 
(0.0368)*** 

0.5461 
(0.0368)*** 

0.1898 
(0.0321)*** 

0.4626 
(0.0354)*** 

0.4985 
(0.0355)*** 

0.7781 
(0.036)*** 

Age  0.1048 
(0.0032)*** 

0.1048 
(0.0032)*** 

0.1042 
(0.0032)*** 

0.1046 
(0.0032)*** 

0.1047 
(0.0032)*** 

0.1047 
(0.0032)*** 

Age squared  ‐0.0012 
(0)*** 

‐0.0012 
(0)*** 

‐0.0011 
(0)*** 

‐0.0012 
(0)*** 

‐0.0011 
(0)*** 

‐0.0012 (0)***

Sex (1=female)  0.3501 
(0.0267)*** 

0.3501 
(0.0267)*** 

0.3513 
(0.0267)*** 

0.3508 
(0.0267)*** 

0.3507 
(0.0267)*** 

0.3484 
(0.0267)*** 

White race  0.2966 
(0.0387)*** 

0.2966 
(0.0387)*** 

0.2799 
(0.0387)*** 

0.2862 
(0.0387)*** 

0.2881 
(0.0387)*** 

0.3042 
(0.0387)*** 

Black race  ‐0.2097 
(0.0497)*** 

‐0.2097 
(0.0497)*** 

‐0.2374 
(0.0497)*** 

‐0.2377 
(0.0497)*** 

‐0.2315 
(0.0497)*** 

‐0.1978 
(0.0497)*** 

Hispanic  ‐0.3439 
(0.0378)*** 

‐0.3439 
(0.0378)*** 

‐0.4025 
(0.0376)*** 

‐0.3523 
(0.0378)*** 

‐0.3538 
(0.0378)*** 

‐0.3011 
(0.0379)*** 

Education >= 
high school 

‐0.234 
(0.0352)*** 

‐0.234 
(0.0352)*** 

‐0.229 
(0.0352)*** 

‐0.2289 
(0.0352)*** 

‐0.2281 
(0.0352)*** 

‐0.2352 
(0.0351)*** 

Employed 
(1=yes) 

‐0.271 
(0.0284)*** 

‐0.271 
(0.0284)*** 

‐0.2732 
(0.0284)*** 

‐0.2708 
(0.0284)*** 

‐0.2689 
(0.0284)*** 

‐0.2652 
(0.0284)*** 

Household size  ‐0.4373 
(0.0075)*** 

‐0.4373 
(0.0075)*** 

‐0.437 
(0.0075)*** 

‐0.4376 
(0.0075)*** 

‐0.4366 
(0.0075)*** 

‐0.438 
(0.0075)*** 

Income 
($/10^4) 

‐7.91 
(0.475)*** 

‐7.91 
(0.475)*** 

‐8.182 
(0.476)*** 

‐8.332 
(0.476)*** 

‐8.281 
(0.476)*** 

‐7.845 
(0.475)*** 

Housing cost 
($/10^4) 

2.862 
(0.114)*** 

2.862 
(0.114)*** 

2.854 
(0.114)*** 

2.861 
(0.114)*** 

2.849 
(0.114)**** 

2.847 
(0.114)*** 

Distance to 
primary food 
store 

0.0766 
(0.0031)*** 

0.0766 
(0.0031)*** 

0.076 
(0.0031)*** 

0.0766 
(0.0031)*** 

0.0768 
(0.0031)*** 

0.0772 
(0.0031)*** 

Rural 
residence 

‐0.0346 
(0.0363) 

‐0.0346 
(0.0363) 

0.0199 
(0.0363) 

‐0.0324 
(0.0364) 

‐0.045 
(0.0365) 

‐0.0625 
(0.0362) 

Food security 
status 

‐0.2168 
(0.0292)*** 

‐0.2168 
(0.0292)*** 

‐0.2112 
(0.0292)*** 

‐0.2174 
(0.0292)*** 

‐0.2196 
(0.0292)*** 

‐0.2163 
(0.0292)*** 

WIC  0.0249 
(0.0402) 

0.0249 
(0.0402) 

0.0411 
(0.0402) 

0.0321 
(0.0402) 

0.0282 
(0.0402) 

0.0197 
(0.0401) 

Supermarkets  ‐4.0753 
(0.3681)*** 

‐4.0753 
(0.3681)*** 

‐3.3387 
(0.3643)*** 

‐3.9846 
(0.3684)*** 

‐3.9813 
(0.3676)*** 

‐4.0863 
(0.3651)*** 

Non‐
supermarkets 

0.9861 
(0.1406)*** 

0.9861 
(0.1406)*** 

1.1854 
(0.14)*** 

1.031 
(0.1405)*** 

0.9701 
(0.1409)*** 

0.9575 
(0.14)*** 

Full‐service 
restaurants 

‐0.1728 
(0.055)** 

‐0.1728 
(0.055)** 

‐0.091 
(0.0552) 

‐0.1325 
(0.0547)* 

‐0.1534 
(0.0549)** 

‐0.2567 
(0.0551)*** 

Limited‐service 
restaurants 

‐0.1194 
(0.1099) 

‐0.1194 
(0.1099) 

‐0.3986 
(0.1094)*** 

‐0.2425 
(0.1085)* 

‐0.186 
(0.1091) 

0.1257 
(0.1103) 
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Poverty rate  0.0452 
(0.5929) 

0.0452 
(0.5929) 

0.9477 
(0.5933) 

0.5339 
(0.5915) 

0.5383 
(0.5914) 

0.1346 
(0.5915) 

Area‐level 
household 
income 

0 (0)***  0 (0)*** 0 (0)*** 0 (0)*** 0 (0)***  0 (0)***

Area‐level 
educational 
attainment 

‐0.3482 
(0.3451) 

‐0.3482 
(0.3451) 

‐1.3275 
(0.3446)*** 

‐0.4541 
(0.3472) 

‐0.3576 
(0.3469) 

0.4301 
(0.3455) 

Vehicle density  1.0595 
(0.5006)* 

1.0595 
(0.5006)* 

1.6372 
(0.4993)** 

1.3001 
(0.4998)** 

1.1746 
(0.5002)* 

0.7635 
(0.5004) 

Kitchen 
availability 

76.3886 
(4.0164)*** 

76.3886 
(4.0164)*** 

62.5276 
(3.9055)*** 

70.0939 
(3.9288)*** 

72.6686 
(3.9591)*** 

85.1344 
(4.0145)*** 

SNAP 
participation 

1.0151 
(0.0293)*** 

1.0151 
(0.0293)*** 

1.0164 
(0.0293)*** 

1.0185 
(0.0293)*** 

1.0163 
(0.0293)*** 

1.0166 
(0.0293)*** 

Intercept  ‐71.8519 
(3.8421)*** 

‐71.8519 
(3.8421)*** 

‐57.6445 
(3.7292)*** 

‐65.7481 
(3.7515)*** 

‐68.1891 
(3.7812)*** 

‐81.281 
(3.8441)*** 

Observations  230,323  230,323 230,323 230,323  230,323 230,323

R‐squared  0.0445  0.0445 0.0437 0.0443  0.0444 0.0455
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(E) 

Covariates  Change in acquisition of dairy

Cost of living 
metric 

Overall RPP  Rent RPP Food RPP Good RPP Services RPP  Geographic 
adjustment to 
the 
Supplemental 
Poverty 
Measure 

Cost of living  0.1297 
(0.01)*** 

0.1297 
(0.01)*** 

0.0031 
(0.0087) 

0.0911 
(0.0096)*** 

0.0878 
(0.0096)*** 

0.1851 
(0.0097)*** 

Age  0.0126 
(0.0009)*** 

0.0126 
(0.0009)*** 

0.0124 
(0.0009)*** 

0.0125 
(0.0009)*** 

0.0125 
(0.0009)*** 

0.0125 
(0.0009)*** 

Age squared  ‐0.0002 
(0)*** 

‐0.0002 
(0)*** 

‐0.0002 
(0)*** 

‐0.0002 
(0)*** 

‐0.0002 
(0)*** 

‐0.0002 (0)***

Sex (1=female)  0.0624 
(0.0072)*** 

0.0624 
(0.0072)*** 

0.063 
(0.0072)*** 

0.0627 
(0.0072)*** 

0.0627 
(0.0072)*** 

0.062 
(0.0072)*** 

White race  0.3358 
(0.0105)*** 

0.3358 
(0.0105)*** 

0.3327 
(0.0105)*** 

0.3333 
(0.0105)*** 

0.3336 
(0.0105)*** 

0.3377 
(0.0105)*** 

Black race  ‐0.1957 
(0.0134)*** 

‐0.1957 
(0.0134)*** 

‐0.2007 
(0.0134)*** 

‐0.2021 
(0.0134)*** 

‐0.2008 
(0.0134)*** 

‐0.1929 
(0.0134)*** 

Hispanic  ‐0.1114 
(0.0102)*** 

‐0.1114 
(0.0102)*** 

‐0.1268 
(0.0102)*** 

‐0.1157 
(0.0102)*** 

‐0.1172 
(0.0102)*** 

‐0.1012 
(0.0102)*** 

Education >= 
high school 

0.0717 
(0.0095)*** 

0.0717 
(0.0095)*** 

0.0732 
(0.0095)*** 

0.0729 
(0.0095)*** 

0.0731 
(0.0095)*** 

0.0714 
(0.0095)*** 

Employed 
(1=yes) 

‐0.0906 
(0.0077)*** 

‐0.0906 
(0.0077)*** 

‐0.0921 
(0.0077)*** 

‐0.0908 
(0.0077)*** 

‐0.0906 
(0.0077)*** 

‐0.0892 
(0.0077)*** 

Household size  ‐0.1131 
(0.002)*** 

‐0.1131 
(0.002)*** 

‐0.1134 
(0.002)*** 

‐0.1132 
(0.002)*** 

‐0.113 
(0.002)*** 

‐0.1132 
(0.002)*** 

Income 
($/10^4) 

‐0.495 
(0.128)*** 

‐0.495 
(0.128)*** 

‐0.537 
(0.128)*** 

‐0.585 
(0.128)*** 

‐0.571 
(0.128)*** 

‐0.479 
(0.128)*** 

Housing cost 
($/10^4) 

0.712 
(0.0307)*** 

0.712 
(0.0307)*** 

0.718 
(0.0307)*** 

0.713 
(0.0307)*** 

0.711 
(0.0307)*** 

0.711 
(0.0307)*** 

Distance to 
primary food 
store 

0.0276 
(0.0008)*** 

0.0276 
(0.0008)*** 

0.0272 
(0.0008)*** 

0.0275 
(0.0008)*** 

0.0275 
(0.0008)*** 

0.0277 
(0.0008)*** 

Rural 
residence 

‐0.0027 
(0.0098) 

‐0.0027 
(0.0098) 

0.0178 
(0.0098) 

0.0013 
(0.0098) 

0.0009 
(0.0099) 

‐0.0094 
(0.0098) 

Food security 
status 

‐0.0686 
(0.0079)*** 

‐0.0686 
(0.0079)*** 

‐0.0675 
(0.0079)*** 

‐0.0685 
(0.0079)*** 

‐0.0688 
(0.0079)*** 

‐0.0685 
(0.0079)*** 

WIC  0.0389 
(0.0108)*** 

0.0389 
(0.0108)*** 

0.044 
(0.0108)*** 

0.0412 
(0.0108)*** 

0.0408 
(0.0108)*** 

0.0376 
(0.0108)** 

Supermarkets  ‐0.9916 
(0.0994)*** 

‐0.9916 
(0.0994)*** 

‐0.7753 
(0.0984)*** 

‐0.9364 
(0.0995)*** 

‐0.9184 
(0.0993)*** 

‐0.9947 
(0.0986)*** 

Non‐
supermarkets 

0.1549 
(0.038)*** 

0.1549 
(0.038)*** 

0.2194 
(0.0378)*** 

0.1749 
(0.0379)*** 

0.169 
(0.0381)*** 

0.1479 
(0.0378)*** 

Full‐service 
restaurants 

‐0.1434 
(0.0149)*** 

‐0.1434 
(0.0149)*** 

‐0.11 
(0.0149)*** 

‐0.1296 
(0.0148)*** 

‐0.1311 
(0.0148)*** 

‐0.1634 
(0.0149)*** 

Limited‐service 
restaurants 

‐0.126 
(0.0297)*** 

‐0.126 
(0.0297)*** 

‐0.2295 
(0.0296)*** 

‐0.1683 
(0.0293)*** 

‐0.1652 
(0.0295)*** 

‐0.0675 
(0.0298)* 
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Poverty rate  ‐0.2466 
(0.1601) 

‐0.2466 
(0.1601) 

‐0.0911 
(0.1602) 

‐0.1246 
(0.1598) 

‐0.1207 
(0.1597) 

‐0.2256 
(0.1598) 

Area‐level 
household 
income 

0 (0)***  0 (0)*** 0 (0)*** 0 (0)*** 0 (0)***  0 (0)***

Area‐level 
educational 
attainment 

2.2235 
(0.0932)*** 

2.2235 
(0.0932)*** 

1.8513 
(0.0931)*** 

2.1376 
(0.0938)*** 

2.1231 
(0.0937)*** 

2.4094 
(0.0933)*** 

Vehicle density  0.6727 
(0.1352)*** 

0.6727 
(0.1352)*** 

0.8114 
(0.1348)*** 

0.7438 
(0.135)*** 

0.7288 
(0.1351)*** 

0.6021 
(0.1352)*** 

Kitchen 
availability 

10.3971 
(1.0847)*** 

10.3971 
(1.0847)*** 

5.9681 
(1.0547)*** 

8.3891 
(1.0611)*** 

8.5766 
(1.0694)*** 

12.4861 
(1.0843)*** 

SNAP 
participation 

0.1941 
(0.0079)*** 

0.1941 
(0.0079)*** 

0.1947 
(0.0079)*** 

0.1949 
(0.0079)*** 

0.1945 
(0.0079)*** 

0.1944 
(0.0079)*** 

Intercept  ‐10.1894 
(1.0376)*** 

‐10.1894 
(1.0376)*** 

‐5.5367 
(1.0071)*** 

‐8.1792 
(1.0132)*** 

‐8.3186 
(1.0213)*** 

‐12.4413 
(1.0383)*** 

Observations  230,323  230,323 230,323 230,323 230,323 230,323

R‐squared  0.0665  0.0665 0.0658 0.0662 0.0661 0.0673
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(F) 

Covariates  Change in acquisition of protein

Cost of living 
metric 

Overall RPP  Rent RPP Food RPP Good RPP Services RPP  Geographic 
adjustment to 
the 
Supplemental 
Poverty 
Measure 

Cost of living  0.0424 
(0.0322) 

0.0424 
(0.0322) 

‐0.0992 
(0.028)*** 

0.1121 
(0.0309)*** 

0.0295 (0.031) 0.1579 
(0.0314)*** 

Age  0.1064 
(0.0028)*** 

0.1064 
(0.0028)*** 

0.1063 
(0.0028)*** 

0.1065 
(0.0028)*** 

0.1064 
(0.0028)*** 

0.1065 
(0.0028)*** 

Age squared  ‐0.001 (0)***  ‐0.001 (0)*** ‐0.001 (0)*** ‐0.001 (0)*** ‐0.001 (0)*** ‐0.001 (0)***

Sex (1=female)  ‐0.1212 
(0.0233)*** 

‐0.1212 
(0.0233)*** 

‐0.1202 
(0.0233)*** 

‐0.1215 
(0.0233)*** 

‐0.1211 
(0.0233)*** 

‐0.1219 
(0.0233)*** 

White race  0.3126 
(0.0338)*** 

0.3126 
(0.0338)*** 

0.3136 
(0.0338)*** 

0.3123 
(0.0338)*** 

0.3119 
(0.0338)*** 

0.3158 
(0.0338)*** 

Black race  0.2695 
(0.0434)*** 

0.2695 
(0.0434)*** 

0.2716 
(0.0434)*** 

0.2661 
(0.0434)*** 

0.2678 
(0.0434)*** 

0.2745 
(0.0434)*** 

Hispanic  ‐0.2019 
(0.033)*** 

‐0.2019 
(0.033)*** 

‐0.2105 
(0.0328)*** 

‐0.1931 
(0.033)*** 

‐0.2037 
(0.033)*** 

‐0.185 
(0.0331)*** 

Education >= 
high school 

‐0.0853 
(0.0307)** 

‐0.0853 
(0.0307)** 

‐0.0839 
(0.0307)** 

‐0.0851 
(0.0307)** 

‐0.0848 
(0.0307)** 

‐0.0863 
(0.0307)** 

Employed 
(1=yes) 

‐0.5655 
(0.0248)*** 

‐0.5655 
(0.0248)*** 

‐0.5684 
(0.0248)*** 

‐0.5644 
(0.0248)*** 

‐0.5655 
(0.0248)*** 

‐0.5635 
(0.0248)*** 

Household size  ‐0.5957 
(0.0066)*** 

‐0.5957 
(0.0066)*** 

‐0.5968 
(0.0066)*** 

‐0.5956 
(0.0066)*** 

‐0.5957 
(0.0066)*** 

‐0.5957 
(0.0066)*** 

Income 
($/10^4) 

2.908 
(0.415)*** 

2.908 
(0.415)*** 

2.949 
(0.415)*** 

2.834 
(0.415)*** 

2.883 
(0.415)*** 

2.943 
(0.415)*** 

Housing cost 
($/10^4) 

1.693 
(0.0992)*** 

1.693 
(0.0992)*** 

1.714 
(0.0994)*** 

1.689 
(0.0992)*** 

1.693 
(0.00993)*** 

1.689 
(0.0992)*** 

Distance to 
primary food 
store 

0.0238 
(0.0027)*** 

0.0238 
(0.0027)*** 

0.023 
(0.0027)*** 

0.0241 
(0.0027)*** 

0.0238 
(0.0027)*** 

0.0241 
(0.0027)*** 

Rural 
residence 

0.1947 
(0.0317)*** 

0.1947 
(0.0317)*** 

0.2194 
(0.0316)*** 

0.1806 
(0.0318)*** 

0.1957 
(0.0318)*** 

0.1779 
(0.0316)*** 

Food security 
status 

‐0.0461 
(0.0255) 

‐0.0461 
(0.0255) 

‐0.0464 
(0.0255) 

‐0.047 
(0.0255) 

‐0.0462 
(0.0255) 

‐0.0466 
(0.0255) 

WIC  0.1369 
(0.0351)*** 

0.1369 
(0.0351)*** 

0.1415 
(0.0351)*** 

0.135 
(0.0351)*** 

0.1375 
(0.0351)*** 

0.1331 
(0.0351)*** 

Supermarkets  2.1521 
(0.3213)*** 

2.1521 
(0.3213)*** 

2.3217 
(0.3178)*** 

2.022 
(0.3215)*** 

2.1747 
(0.3208)*** 

2.0341 
(0.3189)*** 

Non‐
supermarkets 

‐0.8158 
(0.1227)*** 

‐0.8158 
(0.1227)*** 

‐0.7536 
(0.1222)*** 

‐0.8505 
(0.1226)*** 

‐0.8116 
(0.123)*** 

‐0.8563 
(0.1223)*** 

Full‐service 
restaurants 

0.4039 
(0.048)*** 

0.4039 
(0.048)*** 

0.4482 
(0.0482)*** 

0.3898 
(0.0478)*** 

0.4077 
(0.0479)*** 

0.3687 
(0.0481)*** 

Limited‐service 
restaurants 

‐0.6727 
(0.0959)*** 

‐0.6727 
(0.0959)*** 

‐0.7954 
(0.0955)*** 

‐0.6289 
(0.0947)*** 

‐0.6849 
(0.0952)*** 

‐0.5669 
(0.0964)*** 

Poverty rate  11.4431 
(0.5175)*** 

11.4431 
(0.5175)*** 

11.3535 
(0.5176)*** 

11.4567 
(0.5163)*** 

11.484 
(0.5162)*** 

11.3815 
(0.5166)*** 
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Area‐level 
household 
income 

0 (0)*  0 (0)* 0 (0)*** 0 (0) 0 (0)*  0 (0)

Area‐level 
educational 
attainment 

1.7041 
(0.3012)*** 

1.7041 
(0.3012)*** 

1.2488 
(0.3007)*** 

1.9436 
(0.303)*** 

1.6737 
(0.3028)*** 

2.0637 
(0.3017)*** 

Vehicle density  0.0875 
(0.437) 

0.0875 
(0.437) 

0.1366 
(0.4356) 

0.0496 
(0.4362) 

0.1051 
(0.4366) 

‐0.0457 
(0.4371) 

Kitchen 
availability 

37.302 
(3.5059)*** 

37.302 
(3.5059)*** 

33.1374 
(3.4077)*** 

38.905 
(3.429)*** 

36.7303 
(3.4558)*** 

41.4561 
(3.506)*** 

SNAP 
participation 

0.8834 
(0.0256)*** 

0.8834 
(0.0256)*** 

0.8844 
(0.0256)*** 

0.8838 
(0.0256)*** 

0.8836 
(0.0256)*** 

0.8834 
(0.0256)*** 

Intercept  ‐38.0579 
(3.3538)*** 

‐38.0579 
(3.3538)*** 

‐33.4826 
(3.2538)*** 

‐39.8694 
(3.2743)*** 

‐37.4713 
(3.3005)*** 

‐42.4741 
(3.3572)*** 

Observations  230,323  230,323 230,323 230,323  230,323 230,323

R‐squared  0.0774  0.0774 0.0774 0.0774  0.0774 0.0775
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(G) 

Covariates  Change in acquisition of fats and oils

Cost of living 
metric 

Overall RPP  Rent RPP Food RPP Good RPP Services RPP Geographic 
adjustment to 
the 
Supplemental 
Poverty 
Measure 

Cost of living  9.5756 
(0.8897)*** 

9.5756 
(0.8897)*** 

3.4126 
(0.7739)*** 

10.6087 
(0.8543)*** 

8.5808 
(0.8578)*** 

10.5073 
(0.8686)*** 

Age  1.0868 
(0.0764)*** 

1.0868 
(0.0764)*** 

1.0758 
(0.0764)*** 

1.0858 
(0.0764)*** 

1.0834 
(0.0764)*** 

1.0816 
(0.0764)*** 

Age squared  ‐0.0109 
(0.0009)*** 

‐0.0109 
(0.0009)*** 

‐0.0108 
(0.0009)*** 

‐0.0109 
(0.0009)*** 

‐0.0108 
(0.0009)*** 

‐0.0108 
(0.0009)*** 

Sex (1=female)  10.5683 
(0.6444)*** 

10.5683 
(0.6444)*** 

10.5884 
(0.6446)*** 

10.5685 
(0.6444)*** 

10.5786 
(0.6444)*** 

10.5561 
(0.6444)*** 

White race  ‐8.5168 
(0.9352)*** 

‐8.5168 
(0.9352)*** 

‐8.8103 
(0.9352)*** 

‐8.6852 
(0.9349)*** 

‐8.6675 
(0.935)*** 

‐8.4664 
(0.9351)*** 

Black race  ‐8.524 
(1.2001)*** 

‐8.524 
(1.2001)*** 

‐9.0121 
(1.2003)*** 

‐9.0558 
(1.1997)*** 

‐8.9061 
(1.1997)*** 

‐8.4459 
(1.2001)*** 

Hispanic  ‐17.1172 
(0.9138)*** 

‐17.1172 
(0.9138)*** 

‐18.1412 
(0.9081)*** 

‐16.9564 
(0.9135)*** 

‐17.3082 
(0.9126)*** 

‐16.803 
(0.9155)*** 

Education >= 
high school 

1.1326 
(0.8488) 

1.1326 
(0.8488) 

1.2192 
(0.8489) 

1.2139 
(0.8486) 

1.2364 
(0.8487) 

1.1431 
(0.8487) 

Employed 
(1=yes) 

‐2.7595 
(0.6855)*** 

‐2.7595 
(0.6855)*** 

‐2.7953 
(0.6858)*** 

‐2.719 
(0.6854)*** 

‐2.7253 
(0.6856)*** 

‐2.7073 
(0.6855)*** 

Household size  ‐6.802 
(0.1819)*** 

‐6.802 
(0.1819)*** 

‐6.7954 
(0.1821)*** 

‐6.8011 
(0.1819)*** 

‐6.7903 
(0.182)*** 

‐6.8171 
(0.1819)*** 

Income 
($/10^4) 

‐28.96 
(11.48)* 

‐28.96 
(11.48)* 

‐33.788 
(11.487)** 

‐37.734 
(11.485) 

‐35.411 
(11.482)** 

‐28.774 
(11.479)* 

Housing cost 
($/10^4) 

22.285 
(2.745)*** 

22.285 
(2.745)*** 

22.133 
(2.749)*** 

22.116 
(2.745)*** 

22.06 
(2.746)*** 

22.33 
(2.745)*** 

Distance to 
primary food 
store 

1.4371 
(0.0749)*** 

1.4371 
(0.0749)*** 

1.4285 
(0.075)*** 

1.4471 
(0.0749)*** 

1.4398 
(0.0749)*** 

1.4387 
(0.0749)*** 

Rural 
residence 

0.5389 
(0.8762) 

0.5389 
(0.8762) 

1.48 (0.8755) 0.1123 
(0.8787) 

0.389 
(0.8808) 

0.5202 
(0.8738) 

Food security 
status 

‐5.0586 
(0.7046)*** 

‐5.0586 
(0.7046)*** 

‐4.959 
(0.7047)*** 

‐5.0972 
(0.7046)*** 

‐5.1061 
(0.7047)*** 

‐5.0337 
(0.7045)*** 

WIC  0.0331 (0.97)  0.0331 (0.97) 0.316 
(0.9698) 

0.08 (0.9696) 0.0968 
(0.9699) 

0.0518 
(0.9697) 

Supermarkets  ‐8.4219 
(8.8875) 

‐8.4219 
(8.8875) 

4.4086 
(8.7942) 

‐11.3325 
(8.8925) 

‐6.5077 
(8.875) 

‐4.8496 
(8.8205) 

Non‐
supermarkets 

9.8983 
(3.3949)** 

9.8983 
(3.3949)** 

13.3578 
(3.3804)*** 

9.4298 
(3.3917)** 

9.7119 
(3.4024)** 

10.6286 
(3.3818)** 

Full‐service 
restaurants 

‐2.6647 
(1.3283)* 

‐2.6647 
(1.3283)* 

‐1.2571 
(1.3325) 

‐2.523 
(1.3213) 

‐2.2832 
(1.3249) 

‐3.2124 
(1.3318)* 

Limited‐service 
restaurants 

5.5755 
(2.6529)* 

5.5755 
(2.6529)* 

0.7551 
(2.642) 

5.1688 
(2.62)* 

4.2847 
(2.6337) 

7.0821 
(2.6652)** 
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Poverty rate  ‐3.7636 
(14.3157) 

‐3.7636 
(14.3157) 

12.1787 
(14.3222) 

4.0067 
(14.2795) 

4.9281 
(14.2807) 

0.0086 
(14.2902) 

Area‐level 
household 
income 

0 (0.0001)  0 (0.0001) 0.0001 
(0.0001)** 

0 (0.0001) 0 (0.0001)  0 (0.0001)

Area‐level 
educational 
attainment 

‐12.2337 
(8.3324) 

‐12.2337 
(8.3324) 

‐29.1211 
(8.3186)*** 

‐5.9621 
(8.3819) 

‐12.9118 
(8.3749) 

‐8.2134 
(8.3455) 

Vehicle density  21.8935 
(12.0877) 

21.8935 
(12.0877) 

32.0187 
(12.0527)** 

24.2531 
(12.0659)* 

24.0615 
(12.0776)* 

20.2523 
(12.0894) 

Kitchen 
availability 

274.7445 
(96.978)** 

274.7445 
(96.978)** 

34.0148 
(94.2843) 

233.0091 
(94.8457)* 

204.6176 
(95.5951)* 

316.2784 
(96.9787)** 

SNAP 
participation 

16.9698 
(0.708)*** 

16.9698 
(0.708)*** 

16.9921 
(0.7081)*** 

17.0326 
(0.7079)*** 

16.9903 
(0.708)*** 

17.0007 
(0.7079)*** 

Intercept  ‐259.1367 
(92.7704)** 

‐259.1367 
(92.7704)** 

‐12.6172 
(90.0269) 

‐227.1002 
(90.5659)* 

‐189.6767 
(91.2993)* 

‐305.9259 
(92.8629)** 

Observations  230,323  230,323 230,323 230,323  230,323 230,323

R‐squared  0.0211  0.0211 0.0207 0.0213  0.021 0.0212
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(H) 

Covariates  Change in acquisition of added sugars

Cost of living 
metric 

Overall RPP  Rent RPP Food RPP Good RPP Services RPP  Geographic 
adjustment to 
the 
Supplemental 
Poverty 
Measure 

Cost of living  3.6312 
(0.3617)*** 

3.6312 
(0.3617)*** 

1.9743 
(0.3146)*** 

3.1593 
(0.3474)*** 

3.0432 
(0.3487)*** 

4.6085 
(0.3531)*** 

Age  0.3847 
(0.0311)*** 

0.3847 
(0.0311)*** 

0.3808 
(0.0311)*** 

0.3833 
(0.0311)*** 

0.3832 
(0.0311)*** 

0.3831 
(0.0311)*** 

Age squared  ‐0.0048 
(0.0004)*** 

‐0.0048 
(0.0004)*** 

‐0.0048 
(0.0004)*** 

‐0.0048 
(0.0004)*** 

‐0.0048 
(0.0004)*** 

‐0.0048 
(0.0004)*** 

Sex (1=female)  3.6572 
(0.262)*** 

3.6572 
(0.262)*** 

3.6596 
(0.262)*** 

3.661 
(0.262)*** 

3.662 
(0.262)*** 

3.6491 
(0.262)*** 

White race  ‐1.4637 
(0.3802)*** 

‐1.4637 
(0.3802)*** 

‐1.5882 
(0.3802)*** 

‐1.5323 
(0.3801)*** 

‐1.5227 
(0.3801)*** 

‐1.4281 
(0.3802)*** 

Black race  ‐1.7413 
(0.4879)*** 

‐1.7413 
(0.4879)*** 

‐1.9519 
(0.488)*** 

‐1.929 
(0.4878)*** 

‐1.8857 
(0.4878)*** 

‐1.6857 
(0.4879)** 

Hispanic  ‐6.5238 
(0.3715)*** 

‐6.5238 
(0.3715)*** 

‐6.8876 
(0.3692)*** 

‐6.5693 
(0.3715)*** 

‐6.6197 
(0.371)*** 

‐6.3179 
(0.3722)*** 

Education >= 
high school 

0.8895 
(0.3451)* 

0.8895 
(0.3451)* 

0.9163 
(0.3451)** 

0.9231 
(0.3451)** 

0.9291 
(0.3451)** 

0.8871 
(0.345)* 

Employed 
(1=yes) 

‐1.6052 
(0.2787)*** 

‐1.6052 
(0.2787)*** 

‐1.6026 
(0.2788)*** 

‐1.6026 
(0.2787)*** 

‐1.5959 
(0.2787)*** 

‐1.5753 
(0.2787)*** 

Household size  ‐1.4898 
(0.074)*** 

‐1.4898 
(0.074)*** 

‐1.481 
(0.074)*** 

‐1.4916 
(0.074)*** 

‐1.4863 
(0.074)*** 

‐1.4949 
(0.074)*** 

Income 
($/10^4) 

‐27.615 
(4.667)*** 

‐27.615 
(4.667)*** 

‐29.814 
(4.67)*** 

‐30.471 
(4.67)*** 

‐29.976 
(4.668)*** 

‐27.357 
(4.667)*** 

Housing cost 
($/10^4) 

2.005 (1.116)  2.005 (1.116) 1.823 (1.118) 1.993 (1.116) 1.937 (1.116)  1.996 (1.116)

Distance to 
primary food 
store 

0.6096 
(0.0304)*** 

0.6096 
(0.0304)*** 

0.6105 
(0.0305)*** 

0.6101 
(0.0305)*** 

0.6098 
(0.0305)*** 

0.612 
(0.0304)*** 

Rural 
residence 

0.6868 
(0.3562) 

0.6868 
(0.3562) 

0.9215 
(0.3559)* 

0.6863 
(0.3573) 

0.6718 
(0.3581) 

0.5863 
(0.3552) 

Food security 
status 

‐1.321 
(0.2865)*** 

‐1.321 
(0.2865)*** 

‐1.2789 
(0.2865)*** 

‐1.3262 
(0.2865)*** 

‐1.3359 
(0.2865)*** 

‐1.3147
(0.2864)*** 

WIC  ‐3.4429 
(0.3944)*** 

‐3.4429 
(0.3944)*** 

‐3.3559 
(0.3943)*** 

‐3.3976 
(0.3943)*** 

‐3.4109 
(0.3943)*** 

‐3.4576 
(0.3942)*** 

Supermarkets  0.9239 
(3.6134) 

0.9239 
(3.6134) 

5.1184 
(3.5752) 

1.3758 
(3.6159) 

2.0007 
(3.6084) 

1.5289 
(3.5858) 

Non‐
supermarkets 

5.0193 
(1.3803)*** 

5.0193 
(1.3803)*** 

6.0523 
(1.3743)*** 

5.2753 
(1.3791)*** 

5.0726 
(1.3834)*** 

5.0511 
(1.3748)*** 

Full‐service 
restaurants 

‐6.25 
(0.5401)*** 

‐6.25 
(0.5401)*** 

‐5.9424 
(0.5417)*** 

‐6.0008 
(0.5373)*** 

‐6.0523 
(0.5387)*** 

‐6.6412 
(0.5414)*** 

Limited‐service 
restaurants 

2.4217 
(1.0786)* 

2.4217 
(1.0786)* 

1.197 
(1.0741) 

1.6618 
(1.0653) 

1.7712 
(1.0708) 

3.5485 
(1.0835)** 
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Poverty rate  2.2486 
(5.8203) 

2.2486 
(5.8203) 

9.2471 
(5.8225) 

5.4713 
(5.8063) 

5.6053 
(5.8062) 

3.2403 
(5.8095) 

Area‐level 
household 
income 

0 (0)  0 (0) 0 (0) 0 (0) 0 (0)  0 (0)

Area‐level 
educational 
attainment 

‐7.2344 
(3.3877)* 

‐7.2344 
(3.3877)* 

‐11.375 
(3.3818)** 

‐7.6659 
(3.4082)* 

‐8.1687 
(3.405)* 

‐3.7939 
(3.3928) 

Vehicle density  11.304 
(4.9145)* 

11.304
(4.9145)* 

15.1185 
(4.8999)** 

12.8414 
(4.9062)** 

12.3248 
(4.9105)* 

9.9755 
(4.9147)* 

Kitchen 
availability 

63.0633 
(39.4282) 

63.0633 
(39.4282) 

‐9.7941 
(38.3301) 

23.5079 
(38.566) 

30.0069 
(38.8667) 

101.0661 
(39.4252)* 

SNAP 
participation 

5.5688 
(0.2878)*** 

5.5688 
(0.2878)*** 

5.5721 
(0.2879)*** 

5.5914 
(0.2878)*** 

5.5772 
(0.2879)*** 

5.5795 
(0.2878)*** 

Intercept  ‐58.8376 
(37.7175) 

‐58.8376 
(37.7175) 

13.9249 
(36.5993) 

‐20.7638 
(36.8257) 

‐25.5933 
(37.1201) 

‐100.1715 
(37.7519)** 

Observations  230,323  230,323 230,323 230,323 230,323  230,323

R‐squared  0.016  0.016 0.0157 0.0159 0.0159  0.0163
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(I) 

Covariates  Change in 
acquisition of 
kcals/person/day 

   

Cost of living 
metric 

All  Rent  Food  Good  Service  Geo 

Cost of living  213.6908 
(17.4955)*** 

213.6908 
(17.4955)*** 

100.7439 
(15.4089)*** 

198.7354 
(16.7829)*** 

180.5345 
(16.9247)*** 

271.9475 
(17.0996)*** 

Age  33.6024 
(1.5269)*** 

33.6024 
(1.5269)*** 

33.3127 
(1.527)*** 

33.5386 
(1.5269)*** 

33.4989 
(1.5269)*** 

33.5307 
(1.5264)*** 

Age squared  ‐0.3549 
(0.0176)*** 

‐0.3549 
(0.0176)*** 

‐0.3519 
(0.0176)*** 

‐0.3546 
(0.0176)*** 

‐0.3538 
(0.0176)*** 

‐0.3541 
(0.0176)*** 

Sex 
(1=female) 

207.3737 
(12.8789)*** 

207.3737 
(12.8789)*** 

207.4339 
(12.8822)*** 

207.5431 
(12.8791)*** 

207.5899 
(12.8799)*** 

206.96 
(12.8761)*** 

White race  ‐29.7101 
(18.6833) 

‐29.7101 
(18.6833) 

‐37.7365 
(18.6818)* 

‐33.6793 
(18.6774) 

‐33.4675 
(18.679) 

‐27.2528 
(18.6801) 

Black race  ‐175.4031 
(23.8863)*** 

‐175.4031 
(23.8863)*** 

‐191.0138 
(23.8704)*** 

‐186.6609 
(23.863)*** 

‐185.0327 
(23.8661)*** 

‐170.8012 
(23.8827)*** 

Hispanic  ‐401.8737 
(18.1745)*** 

‐401.8737 
(18.1745)*** 

‐421.5158 
(18.0905)*** 

‐402.9677 
(18.1714)*** 

‐406.664 
(18.1583)*** 

‐390.4421 
(18.2023)*** 

Education >= 
high school 

40.6816 
(16.9642)* 

40.6816 
(16.9642)* 

42.5034 
(16.9673)* 

42.6204 
(16.9632)* 

43.045 
(16.9641)* 

40.5004 
(16.9599)* 

Employed 
(1=yes) 

‐133.7668 
(13.6947)*** 

‐133.7668 
(13.6947)*** 

‐133.4033 
(13.7011)*** 

‐133.4263 
(13.6954)*** 

‐133.023 
(13.697)*** 

‐132.1955 
(13.6925)*** 

Household 
size 

‐200.0934 
(3.6364)*** 

‐200.0934 
(3.6364)*** 

‐199.7431 
(3.6398)*** 

‐200.1667 
(3.6364)*** 

‐199.8874 
(3.6371)*** 

‐200.3827 
(3.6353)*** 

Income   ‐0.0835 
(0.0229)*** 

‐0.0835 
(0.0229)*** 

‐0.0964 
(0.023)*** 

‐0.101 
(0.0229)*** 

‐0.0977 
(0.0229)*** 

‐0.0817 
(0.0229)*** 

Housing cost   0.0743 
(0.0055)*** 

0.0743 
(0.0055)*** 

0.0737 
(0.0055)*** 

0.0742 
(0.0055)*** 

0.074 
(0.0055)*** 

0.0742 
(0.0055)*** 

Distance to 
primary food 
store 

34.6677 
(1.4968)*** 

34.6677 
(1.4968)*** 

34.6459 
(1.4992)*** 

34.7478 
(1.4971)*** 

34.6918 
(1.4973)*** 

34.8112 
(1.4963)*** 

Rural 
residence 

‐3.4757 
(17.4462) 

‐3.4757 
(17.4462) 

16.4352 
(17.4042) 

‐5.8944 
(17.5052) 

‐3.6526 
(17.5425) 

‐10.6362 
(17.3907) 

Food security 
status 

‐127.332 
(14.0753)*** 

‐127.332 
(14.0753)*** 

‐124.1741 
(14.0768)*** 

‐127.776 
(14.0764)*** 

‐127.9995 
(14.0783)*** 

‐127.2321 
(14.0713)*** 

WIC  ‐22.4535 
(19.3852) 

‐22.4535 
(19.3852) 

‐16.3039 
(19.3807) 

‐20.1978 
(19.3797) 

‐20.4531 
(19.3838) 

‐23.5373 
(19.3768) 

Supermarkets  ‐121.7797 
(176.7616) 

‐121.7797 
(176.7616) 

120.3072 
(175.2386) 

‐118.2932 
(176.8537) 

‐66.7768 
(176.5952) 

‐80.2491 
(175.5576) 

Non‐
supermarkets 

339.6398 
(66.3065)*** 

339.6398 
(66.3065)*** 

385.7711 
(66.2006)*** 

348.2456 
(66.2584)*** 

335.6688 
(66.4553)*** 

348.3814 
(66.1193)*** 

Full‐service 
restaurants 

‐210.3131 
(25.1438)*** 

‐210.3131 
(25.1438)*** 

‐171.7034 
(25.0527)*** 

‐198.5301 
(24.9553)*** 

‐194.4596 
(25.0089)*** 

‐238.8015 
(25.2208)*** 

Limited‐
service 
restaurants 

97.7063 
(50.6484) 

97.7063 
(50.6484) 

‐18.0903 
(49.8796) 

61.9368 
(49.8432) 

51.5819 
(50.0645) 

174.925 
(50.9076)** 

Poverty rate  267.1659 
(273.8725) 

267.1659 
(273.8725) 

799.4013 
(271.8986)** 

452.8953 
(272.3408) 

506.6017 
(272.1586) 

276.5304 
(272.7734) 

Area‐level 
household 
income 

‐0.0043 
(0.001)*** 

‐0.0043 
(0.001)*** 

‐0.001 
(0.0009) 

‐0.0041 
(0.001)*** 

‐0.0037 
(0.001)*** 

‐0.0049 
(0.001)*** 



Food APS Research at UKCPR – Page 128 
 

Area‐level 
educational 
attainment 

95.709 
(165.9443) 

95.709 
(165.9443) 

‐191.6975 
(166.0107) 

112.0125 
(166.8807) 

47.6546 
(166.8517) 

297.8486 
(166.1989) 

Vehicle 
density 

1837.181 
(126.0363)*** 

1837.181 
(126.0363)*** 

1729.557 
(125.9621)*** 

1917.709 
(127.3076)*** 

1796.765 
(125.8842)*** 

1871.693 
(125.7321)*** 

Kitchen 
availability 

14961.37 
(1936.219)*** 

14961.37 
(1936.219)*** 

9927.348 
(1877.159)*** 

12985.27 
(1892.467)*** 

12962.7 
(1907.152)*** 

17336.27 
(1935.719)*** 

SNAP 
participation 

425.0196 
(14.1497)*** 

425.0196 
(14.1497)*** 

425.5168 
(14.1531)*** 

426.369 
(14.1496)*** 

425.5673 
(14.1506)*** 

425.5873 
(14.1462)*** 

Intercept  ‐14301.97 
(1850.147)*** 

‐14301.97 
(1850.147)*** 

‐9158.007 
(1788.17)*** 

‐12445.57 
(1804.575)*** 

‐12276.34 
(1818.698)*** 

‐16896.19 
(1851.454)*** 

  0 (0)***  0 (0)***  0 (0)***  0 (0)***  0 (0)***  0 (0)*** 

Observations  230,323  230,323  230,323  230,323  230,323  230,323 

R‐squared  0.0388  0.0388  0.0383  0.0387  0.0386  0.0392 
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(J) 

Covariates  Change in HEI score

Cost of living 
metric 

Overall RPP  Rent RPP Food RPP Good RPP Services RPP  Geographic 
adjustment 
to the 
Supplemental 
Poverty 
Measure 

Cost of living  0.1507 
(0.0278)*** 

0.1507 
(0.0278)*** 

0.0424 
(0.0242) 

0.1705 
(0.0267)*** 

0.1703 
(0.0268)*** 

0.1945 
(0.0272)*** 

Age  0.2863 
(0.0024)*** 

0.2863 
(0.0024)*** 

0.2862 
(0.0024)*** 

0.2863 
(0.0024)*** 

0.2863 
(0.0024)*** 

0.2863 
(0.0024)*** 

Age squared  ‐0.0027 
(0)*** 

‐0.0027 
(0)*** 

‐0.0027 
(0)*** 

‐0.0027 
(0)*** 

‐0.0027 
(0)*** 

‐0.0027 
(0)*** 

Sex (1=female)  0.8019 
(0.0201)*** 

0.8019 
(0.0201)*** 

0.8023 
(0.0201)*** 

0.8019 
(0.0201)*** 

0.8019 
(0.0201)*** 

0.8016 
(0.0201)*** 

White race  ‐0.6794 
(0.0292)*** 

‐0.6794 
(0.0292)*** 

‐0.6838 
(0.0292)*** 

‐0.682 
(0.0292)*** 

‐0.6815 
(0.0292)*** 

‐0.6778 
(0.0292)*** 

Black race  0.0839 
(0.0375)* 

0.0839 
(0.0375)* 

0.0766 
(0.0375)* 

0.0755 
(0.0375)* 

0.0778 
(0.0375)* 

0.0863 
(0.0375)* 

Hispanic  0.2705 
(0.0286)*** 

0.2705 
(0.0286)*** 

0.2539 
(0.0284)*** 

0.2734 
(0.0286)*** 

0.2714 
(0.0285)*** 

0.2794 
(0.0286)*** 

Education >= 
high school 

0.3887 
(0.0265)*** 

0.3887 
(0.0265)*** 

0.3902 
(0.0265)*** 

0.39 
(0.0265)*** 

0.3903 
(0.0265)*** 

0.3886 
(0.0265)*** 

Employed 
(1=yes) 

0.1422 
(0.0214)*** 

0.1422 
(0.0214)*** 

0.1414 
(0.0214)*** 

0.1429 
(0.0214)*** 

0.1434 
(0.0214)*** 

0.1435 
(0.0214)*** 

Household size  ‐0.0524 
(0.0057)*** 

‐0.0524 
(0.0057)*** 

‐0.0524 
(0.0057)*** 

‐0.0524 
(0.0057)*** 

‐0.0521 
(0.0057)*** 

‐0.0526 
(0.0057)*** 

Income 
($/10^4) 

1.09 
(0.359)** 

1.09 
(0.359)** 

1.02 (0.359) 0.95 
(0.359)** 

0.975 
(0.359)** 

1.102 
(0.359)** 

Housing cost 
($/10^4) 

‐0.367 
(0.0858)*** 

‐0.367 
(0.0858)*** 

‐0.357 
(0.0859)*** 

‐0.37 
(0.0858)*** 

‐0.373 
(0.0858)*** 

‐0.357 
(0.0858)*** 

Distance to 
primary food 
store 

‐0.0176 
(0.0023)*** 

‐0.0176 
(0.0023)*** 

‐0.0178 
(0.0023)*** 

‐0.0175 
(0.0023)*** 

‐0.0174 
(0.0023)*** 

‐0.0175 
(0.0023)*** 

Rural 
residence 

0.2329 
(0.0274)*** 

0.2329 
(0.0274)*** 

0.2497 
(0.0274)*** 

0.2255 
(0.0275)*** 

0.2235 
(0.0275)*** 

0.2282 
(0.0273)*** 

Food security 
status 

‐0.1016 
(0.022)*** 

‐0.1016 
(0.022)*** 

‐0.1001 
(0.022)*** 

‐0.1022 
(0.022)*** 

‐0.1028 
(0.022)*** 

‐0.1013 
(0.022)*** 

WIC  0.5077 
(0.0303)*** 

0.5077 
(0.0303)*** 

0.5125 
(0.0303)*** 

0.5083 
(0.0303)*** 

0.5074 
(0.0303)*** 

0.507 
(0.0303)*** 

Supermarkets  ‐1.5117 
(0.2778)*** 

‐1.5117 
(0.2778)*** 

‐1.2986 
(0.2749)*** 

‐1.5638 
(0.278)*** 

‐1.5403 
(0.2774)*** 

‐1.4904 
(0.2758)*** 

Non‐
supermarkets 

‐0.1971 
(0.1061) 

‐0.1971 
(0.1061) 

‐0.138 
(0.1057) 

‐0.2062 
(0.106) 

‐0.2207 
(0.1064)* 

‐0.197 
(0.1057) 

Full‐service 
restaurants 

‐0.3059 
(0.0415)*** 

‐0.3059 
(0.0415)*** 

‐0.28 
(0.0417)*** 

‐0.3045 
(0.0413)*** 

‐0.3088 
(0.0414)*** 

‐0.3231 
(0.0416)*** 

Limited‐service 
restaurants 

0.9541 
(0.0829)*** 

0.9541 
(0.0829)*** 

0.8682 
(0.0826)*** 

0.9501 
(0.0819)*** 

0.9607 
(0.0823)*** 

1.0037 
(0.0833)*** 
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Poverty rate  0.3167 
(0.4476) 

0.3167 
(0.4476) 

0.5518 
(0.4477) 

0.4379 
(0.4464) 

0.4434 
(0.4464) 

0.3556 
(0.4468) 

Area‐level 
household 
income 

0 (0)***  0 (0)*** 0 (0)*** 0 (0)*** 0 (0)***  0 (0)***

Area‐level 
educational 
attainment 

‐1.8695 
(0.2605)*** 

‐1.8695 
(0.2605)*** 

‐2.1729 
(0.26)*** 

‐1.7595 
(0.2621)*** 

‐1.7669 
(0.2618)*** 

‐1.7169 
(0.2609)*** 

Vehicle density  2.2086 
(0.3779)*** 

2.2086 
(0.3779)*** 

2.3684 
(0.3767)*** 

2.2432 
(0.3772)*** 

2.2095 
(0.3776)*** 

2.1498 
(0.378)*** 

Kitchen 
availability 

‐10.5467 
(3.0318)** 

‐10.5467 
(3.0318)** 

‐14.6418 
(2.9472)*** 

‐11.1081 
(2.9653)*** 

‐10.5699 
(2.9884)*** 

‐8.8552 
(3.0319)** 

SNAP 
participation 

‐0.0697 
(0.0221)** 

‐0.0697 
(0.0221)** 

‐0.0693 
(0.0221)** 

‐0.0688 
(0.0221)** 

‐0.0695 
(0.0221)** 

‐0.0693 
(0.0221)** 

Intercept  56.5581 
(2.9003)*** 

56.5581 
(2.9003)*** 

60.7823 
(2.8141)*** 

56.9579 
(2.8315)*** 

56.4971 
(2.8541)*** 

54.7214 
(2.9032)*** 

Observations  230,323  230,323 230,323 230,323 230,323 230,323

R‐squared  0.1487  0.1487 0.1486 0.1487 0.1487 0.1488
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‐: Ordinary least squares regressions testing hypothesis 2: that SNAP participation is associated with living 

in a lower cost of living area. Regressions include survey sample weights to account for differential 

sampling and response. * = p<0.05; ** = p<0.01; *** = p<0.001 

  Change in probability of living in a high‐cost area

Cost of living 
metric for 
outcome 

Overall RPP  Rent RPP Food RPP Good RPP Services RPP Geographic 
adjustment 
to the 
Supplemental 
Poverty 
Measure 

Covariates       

Age  ‐0.0007 
(0.0002)** 

‐0.0007 
(0.0002)** 

0.0001 
(0.0002) 

‐0.0001 
(0.0002) 

‐0.0002 
(0.0002) 

‐0.0002 
(0.0002) 

Age squared  0 (0)**  0 (0)** 0 (0) 0 (0) 0 (0)  0 (0)

Sex (1=female)  0.0115 
(0.0021)*** 

0.0115 
(0.0021)*** 

0.0117 
(0.0023)*** 

0.0068 
(0.0021)** 

0.009 
(0.0021)*** 

0.0138 
(0.0021)*** 

White race  ‐0.0054 
(0.0029) 

‐0.0054 
(0.0029) 

0.0205 
(0.0032)*** 

0.0046 
(0.0029) 

‐0.0002 
(0.0029) 

‐0.0119 
(0.0029)*** 

Black race  ‐0.0165 
(0.0036)*** 

‐0.0165 
(0.0036)*** 

0.0093 
(0.004)* 

0.0101 
(0.0037)** 

‐0.0101 
(0.0037)** 

‐0.02 
(0.0036)*** 

Hispanic  ‐0.1165 
(0.0028)*** 

‐0.1165 
(0.0028)*** 

‐0.0608 
(0.0031)*** 

‐0.135 
(0.0028)*** 

‐0.1253 
(0.0028)*** 

‐0.1271 
(0.0028)*** 

Education >= 
high school 

0.0004 
(0.0024) 

0.0004 
(0.0024) 

0.0062 
(0.0026)* 

0.0014 
(0.0024) 

‐0.0021 
(0.0024) 

‐0.002 
(0.0024) 

Employed 
(1=yes) 

‐0.0058 
(0.0021)** 

‐0.0058 
(0.0021)** 

‐0.0123 
(0.0024)*** 

‐0.0077 
(0.0022)*** 

‐0.0085 
(0.0022)*** 

‐0.0089 
(0.0022)*** 

Household size  0.0033 
(0.0005)*** 

0.0033 
(0.0005)*** 

‐0.005 
(0.0006)*** 

0.0029 
(0.0005)*** 

0.0019 
(0.0005)*** 

0.0042 
(0.0005)*** 

Income 
($/10^4) 

‐0.62 
(0.0747)*** 

‐0.62 
(0.0747)*** 

‐0.322 
(0.0825)** 

‐0.496 
(0.076)*** 

‐0.46 
(0.0758)*** 

‐0.581 
(0.0753)*** 

Housing cost 
($/10^4) 

0.0498 
(0.0075)*** 

0.0498 
(0.0075)*** 

0.101 
(0.0082)*** 

0.0491 
(0.0076)*** 

0.0521 
(0.0076)*** 

0.0412 
(0.0075)*** 

Distance to 
primary food 
store 

‐0.0017 
(0.0002)*** 

‐0.0017 
(0.0002)*** 

‐0.0046 
(0.0003)*** 

‐0.0018 
(0.0003)*** 

‐0.0019 
(0.0002)*** 

‐0.001 
(0.0002)*** 

Rural residence  ‐0.1829 
(0.0028)*** 

‐0.1829 
(0.0028)*** 

‐0.1703 
(0.0031)*** 

‐0.1712 
(0.0029)*** 

‐0.1787 
(0.0029)*** 

‐0.1884 
(0.0029)*** 

Food security 
status 

0.009 
(0.0019)*** 

0.009 
(0.0019)*** 

‐0.0109 
(0.0021)*** 

0.0083 
(0.002)*** 

0.0101 
(0.002)*** 

0.0083 
(0.002)*** 

WIC  0.0275 
(0.0026)*** 

0.0275 
(0.0026)*** 

0.0252 
(0.0028)*** 

0.0152 
(0.0026)*** 

0.0274 
(0.0026)*** 

0.0301 
(0.0026)*** 

Supermarkets  2.0403 
(0.0282)*** 

2.0403 
(0.0282)*** 

1.4664 
(0.0311)*** 

2.1276 
(0.0287)*** 

2.0222 
(0.0286)*** 

1.7591 
(0.0284)*** 

Non‐
supermarkets 

0.4815 
(0.0103)*** 

0.4815 
(0.0103)*** 

0.3486 
(0.0114)*** 

0.448 
(0.0105)*** 

0.5125 
(0.0104)*** 

0.3087 
(0.0104)*** 

Full‐service 
restaurants 

0.25 
(0.0045)*** 

0.25 
(0.0045)*** 

0.3368 
(0.005)*** 

0.2189 
(0.0046)*** 

0.2502 
(0.0046)*** 

0.276 
(0.0046)*** 

Limited‐service 
restaurants 

‐0.9057 
(0.0084)*** 

‐0.9057 
(0.0084)*** 

‐1.0491 
(0.0093)*** 

‐0.8327 
(0.0086)*** 

‐0.9014 
(0.0085)*** 

‐1.0018 
(0.0085)*** 
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Poverty rate  1.365 
(0.045)*** 

1.365 
(0.045)*** 

‐0.5246 
(0.0497)*** 

1.0621 
(0.0458)*** 

1.0474 
(0.0457)*** 

1.505 
(0.0454)*** 

Area‐level 
household 
income 

0 (0)***  0 (0)*** 0 (0)*** 0 (0)*** 0 (0)***  0 (0)***

Area‐level 
educational 
attainment 

‐2.4975 
(0.0246)*** 

‐2.4975 
(0.0246)*** 

‐2.7909 
(0.0271)*** 

‐2.6542 
(0.025)*** 

‐2.6466 
(0.0249)*** 

‐2.4548 
(0.0248)*** 

Vehicle density  0.8337 
(0.0385)*** 

0.8337 
(0.0385)*** 

‐0.1663 
(0.0425)*** 

0.7765 
(0.0392)*** 

0.7916 
(0.039)*** 

0.6883 
(0.0388)*** 

Kitchen 
availability 

‐33.5129 
(0.2834)*** 

‐33.5129 
(0.2834)*** 

‐29.0668 
(0.3131)*** 

‐29.4001 
(0.2885)*** 

‐31.774 
(0.2876)*** 

‐34.0333 
(0.2857)*** 

SNAP 
(1=participant) 

‐0.0049 
(0.002)* 

‐0.0049 
(0.002)* 

0.0012 
(0.0022) 

‐0.0118 
(0.002)*** 

‐0.0071 
(0.002)*** 

‐0.0034 
(0.002) 

Intercept  35.1516 
(0.2676)*** 

35.1516 
(0.2676)*** 

32.0741 
(0.2957)*** 

31.4474 
(0.2724)*** 

33.5628 
(0.2716)*** 

35.8165 
(0.2698)*** 

Observations  135,627  135,627 135,627 135,627  135,627 135,627

R‐squared  0.5176  0.5176 0.4279 0.5073  0.5058 0.5127
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Table 9: Ordinary least squares regressions testing hypothesis 3: that the relationship between 

SNAP participation and food acquisition is moderated by area cost of living. Subtables (A)‐(H) 

correspond to food pattern equivalents of food categories 1 through 8 (vegetables through 

added sugars) as the outcome (in food pattern equivalents units), while subtable (I) corresponds 

to kilocalories per person per day as the outcome and (J) corresponds to the Healthy Eating 

Index as the outcome. Each table includes an interaction term for participation in SNAP 

interacted with living in a high‐cost area, either by overall regional price parity as the metric of 

cost of living, or by food regional price parity as the metric of cost of living.  All regressions 

include survey sample weights to account for differential sampling and response. * = p<0.05; ** 

= p<0.01; *** = p<0.001 

 

(A) 

Covariate  Change in acquisition of vegetables 

Cost of living 
metric 

Overall RPP  Food RPP 

Age  0.0267 
(0.0013)*** 

0.0268 
(0.0013)*** 

Age squared  ‐0.0002 (0)***  ‐0.0002 (0)*** 

Sex (1=female)  0.1063 
(0.012)*** 

0.1054 
(0.012)*** 

White race  0.0553 
(0.0166)** 

0.0559 
(0.0166)** 

Black race  ‐0.204 
(0.0208)*** 

‐0.2028 
(0.0208)*** 

Hispanic  ‐0.2501 
(0.0161)*** 

‐0.2431 
(0.0161)*** 

Education >= 
high school 

‐0.163 
(0.0137)*** 

‐0.1623 
(0.0137)*** 

Employed 
(1=yes) 

‐0.0954 
(0.0124)*** 

‐0.0956 
(0.0124)*** 

Household size  ‐0.188 (0.003)***  ‐0.1884 
(0.003)*** 

Income ($/10^4)  1.249 (0.432)**  1.272 (0.432)** 

Housing cost 
($/10^4) 

0.911 
(0.0431)*** 

0.913 
(0.0431)*** 

Distance to 
primary food 
store 

0.0072 
(0.0014)*** 

0.0072 
(0.0014)*** 

Rural residence  0.2179 
(0.0166)*** 

0.2096 
(0.0165)*** 

Food security 
status 

‐0.0834 
(0.0112)*** 

‐0.0841 
(0.0112)*** 
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WIC  0.0588 
(0.0149)*** 

0.0577 
(0.0149)*** 

Supermarkets  ‐0.598 
(0.1657)*** 

‐0.7098 
(0.1644)*** 

Non‐
supermarkets 

‐0.441 
(0.0597)*** 

‐0.4596 
(0.0596)*** 

Full‐service 
restaurants 

‐0.2206 
(0.0266)*** 

‐0.2314 
(0.0267)*** 

Limited‐service 
restaurants 

0.1457 
(0.0505)** 

0.1856 
(0.0507)*** 

Poverty rate  2.7404 
(0.2614)*** 

2.6084 
(0.2605)*** 

Area‐level 
household 
income 

0 (0)***  0 (0)*** 

Area‐level 
educational 
attainment 

‐1.5401 
(0.1463)*** 

‐1.435 
(0.1465)*** 

Vehicle density  0.3844 (0.2227)  0.321 (0.2226) 

Kitchen 
availability 

8.0199 
(1.7048)*** 

9.6985 
(1.6803)*** 

snap  ‐0.1352 
(0.0121)*** 

‐0.1233 
(0.0121)*** 

SNAP‐cost 
interaction 

‐0.0545 
(0.0098)*** 

‐0.0226 (0.0091)* 

Intercept  ‐6.0353 
(1.6247)*** 

‐7.7546 
(1.6012)*** 

Observations  135,627 135,627

R‐squared  0.0684 0.0683
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(B) 

Covariate  Change in acquisition of fruits 

Cost of living 
metric 

Overall RPP  Food RPP 

Age  0.003 
(0.0005)*** 

0.0029 
(0.0005)*** 

Age squared  0 (0)  0 (0) 

Sex (1=female)  0.0439 
(0.005)*** 

0.0436 
(0.005)*** 

White race  0.0373 
(0.0069)*** 

0.0346 
(0.0069)*** 

Black race  0.003 (0.0086)  0.0009 (0.0086) 

Hispanic  0.1704 
(0.0067)*** 

0.1684 
(0.0067)*** 

Education >= 
high school 

0.0786 
(0.0057)*** 

0.0787 
(0.0057)*** 

Employed 
(1=yes) 

‐0.064 
(0.0051)*** 

‐0.0636 
(0.0051)*** 

Household size  ‐0.069 
(0.0013)*** 

‐0.0686 
(0.0013)*** 

Income ($/10^4)  ‐022 (0.179)  ‐0.223 (0.179) 

Housing cost 
($/10^4) 

0.454 
(0.0179)*** 

0.451 (0.0179) 

Distance to 
primary food 
store 

0.0204 
(0.0006)*** 

0.0206 
(0.0006)*** 

Rural residence  ‐0.0877 
(0.0069)*** 

‐0.0903 
(0.0068)*** 

Food security 
status 

‐0.1225 
(0.0047)*** 

‐0.1214 
(0.0047)*** 

WIC  0.146 
(0.0062)*** 

0.1458 
(0.0062)*** 

Supermarkets  ‐0.5423 
(0.0687)*** 

‐0.5581 
(0.0682)*** 

Non‐
supermarkets 

0.2485 
(0.0247)*** 

0.2481 
(0.0247)*** 

Full‐service 
restaurants 

‐0.0603 
(0.011)*** 

‐0.0714 
(0.0111)*** 

Limited‐service 
restaurants 

0.0646 
(0.0209)** 

0.0939 
(0.021)*** 

Poverty rate  1.2914 
(0.1084)*** 

1.3705 
(0.108)*** 

Area‐level 
household 
income 

0 (0)***  0 (0)*** 
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Area‐level 
educational 
attainment 

0.4424 
(0.0607)*** 

0.5121 
(0.0607)*** 

Vehicle density  ‐0.2659 
(0.0924)** 

‐0.2231 (0.0923)* 

Kitchen 
availability 

‐5.4358 
(0.7071)*** 

‐5.0195 
(0.6966)*** 

snap  0.0773 
(0.005)*** 

0.0848 
(0.005)*** 

SNAP‐cost 
interaction 

0.0279 
(0.0041)*** 

0.043 
(0.0038)*** 

Intercept  4.9826 
(0.6739)*** 

4.4475 
(0.6638)*** 

Observations  135,627 135,627

R‐squared  0.0757 0.0763
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(C) 

Covariate  Change in acquisition of whole grains 

Cost of living 
metric 

Overall RPP  Food RPP 

Age  0.0108 
(0.0019)*** 

0.0105 
(0.0019)*** 

Age squared  ‐0.0001 (0)**  ‐0.0001 (0)** 

Sex (1=female)  0.1643 
(0.0174)*** 

0.1652 
(0.0174)*** 

White race  ‐0.5929 
(0.024)*** 

‐0.5968 
(0.0241)*** 

Black race  ‐0.7991 
(0.0302)*** 

‐0.8032 
(0.0302)*** 

Hispanic  ‐0.623 
(0.0234)*** 

‐0.6351 
(0.0233)*** 

Education >= 
high school 

0.2685 
(0.0199)*** 

0.2677 
(0.0199)*** 

Employed 
(1=yes) 

‐0.3386 
(0.018)*** 

‐0.338 (0.018)*** 

Household size  ‐0.037 
(0.0044)*** 

‐0.036 
(0.0044)*** 

Income ($/10^4)  7.213 (0.627)***  7.177 (0.627)*** 

Housing cost 
($/10^4) 

0.178 (0.0626)**  0.178 1 
(0.0626)** 

Distance to 
primary food 
store 

0.0116 
(0.0021)*** 

0.0119 
(0.0021)*** 

Rural residence  ‐0.1123 
(0.024)*** 

‐0.1036 
(0.024)*** 

Food security 
status 

‐0.2399 
(0.0163)*** 

‐0.2378 
(0.0163)*** 

WIC  0.0626 
(0.0216)** 

0.064 (0.0216)** 

Supermarkets  ‐1.6465 
(0.2404)*** 

‐1.5067 
(0.2386)*** 

Non‐
supermarkets 

0.8362 
(0.0866)*** 

0.8619 
(0.0864)*** 

Full‐service 
restaurants 

0.293 
(0.0386)*** 

0.2958 
(0.0388)*** 

Limited‐service 
restaurants 

‐0.8946 
(0.0733)*** 

‐0.9181 
(0.0736)*** 

Poverty rate  4.3844 
(0.3792)*** 

4.6584 
(0.3779)*** 

Area‐level 
household 
income 

0 (0)***  0 (0)*** 
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Area‐level 
educational 
attainment 

0.8057 
(0.2122)*** 

0.7355 
(0.2125)** 

Vehicle density  ‐5.044 
(0.3231)*** 

‐4.9071 
(0.3229)*** 

drive  2.8652 
(0.2106)*** 

2.7291 
(0.2089)*** 

Kitchen 
availability 

4.5716 (2.4731)  2.6744 (2.4376) 

snap  0.0329 (0.0175)  0.0245 (0.0175) 

SNAP‐cost 
interaction 

0.1078 
(0.0142)*** 

0.0798 
(0.0132)*** 

Intercept  ‐3.8055 (2.357)  ‐1.9835 (2.3228) 

Observations  135,627 135,627

R‐squared  0.0323 0.0321
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(D) 

Covariate  Change in acquisition of refined grains 

Cost of living 
metric 

Overall RPP  Food RPP 

Age  0.0922 
(0.0041)*** 

0.0918 
(0.0041)*** 

Age squared  ‐0.0009 (0)***  ‐0.0009 (0)*** 

Sex (1=female)  0.4 (0.0378)***  0.4058 
(0.0378)*** 

White race  ‐0.0397 (0.0523)  ‐0.0359 (0.0524) 

Black race  ‐0.2025 (0.0657)**  ‐0.2035 (0.0658)** 

Hispanic  ‐0.7198 
(0.0509)*** 

‐0.7518 
(0.0507)*** 

Education >= 
high school 

‐0.2587 
(0.0434)*** 

‐0.2628 
(0.0434)*** 

Employed 
(1=yes) 

‐0.2832 
(0.0392)*** 

‐0.2835 
(0.0392)*** 

Household size  ‐0.4309 
(0.0096)*** 

‐0.4298 
(0.0096)*** 

Income ($/10^4)  ‐12.997 (1.364)***  ‐13.112 (1.365)*** 

Housing cost 
($/10^4) 

3.595 (0.136)***  3.593 (0.136)*** 

Distance to 
primary food 
store 

0.1326 
(0.0045)*** 

0.1323 
(0.0045)*** 

Rural residence  ‐0.0337 (0.0523)  0.0181 (0.0522) 

Food security 
status 

‐0.2878 
(0.0355)*** 

‐0.2869 
(0.0355)*** 

WIC  0.1512 (0.0471)**  0.158 (0.0471)** 

Supermarkets  ‐5.8804 
(0.5234)*** 

‐5.2388 
(0.5194)*** 

Non‐
supermarkets 

2.2466 
(0.1884)*** 

2.3469 
(0.1881)*** 

Full‐service 
restaurants 

0.0246 (0.0841)  0.1123 (0.0845) 

Limited‐service 
restaurants 

0.1256 (0.1595)  ‐0.1678 (0.1601) 

Poverty rate  7.5429 
(0.8254)*** 

8.0345 
(0.8226)*** 

Area‐level 
household 
income 

0 (0)***  0 (0)*** 

Area‐level 
educational 
attainment 

‐0.4576 (0.4619)  ‐1.2093 (0.4626)** 
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Vehicle density  ‐1.0346 (0.7034)  ‐0.8112 (0.7029) 

Kitchen 
availability 

61.8326 
(5.3835)*** 

51.7184 
(5.3067)*** 

snap  1.1929 
(0.0381)*** 

1.1084 
(0.0381)*** 

SNAP‐cost 
interaction 

0.2157 (0.031)***  0.0041 (0.0287) 

Intercept  ‐59.9126 
(5.1306)*** 

‐49.2575 
(5.0566)*** 

Observations  135,627 135,627

R‐squared  0.0501 0.0498
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(E) 

Covariate  Change in 
acquisition of dairy 

Cost of living 
metric 

Overall RPP  Food RPP 

Age  0.0118 (0.001)***  0.0116 (0.001)*** 

Age squared  ‐0.0001 (0)***  ‐0.0001 (0)*** 

Sex (1=female)  0.0136 (0.0095)  0.0152 (0.0095) 

White race  0.2361 
(0.0131)*** 

0.2332 
(0.0131)*** 

Black race  ‐0.1962 
(0.0164)*** 

‐0.2001 
(0.0164)*** 

Hispanic  ‐0.1595 
(0.0127)*** 

‐0.1744 
(0.0127)*** 

Education >= 
high school 

0.0963 
(0.0108)*** 

0.0949 
(0.0108)*** 

Employed 
(1=yes) 

‐0.1848 
(0.0098)*** 

‐0.1843 
(0.0098)*** 

Household size  ‐0.1419 
(0.0024)*** 

‐0.1408 
(0.0024)*** 

Income ($/10^4)  ‐2.288 (0.341)***  ‐2.334 (0.341)*** 

Housing cost 
($/10^4) 

0.937 (0.034)***  0.931 (0.034)*** 

Distance to 
primary food 
store 

0.0324 
(0.0011)*** 

0.0326 
(0.0011)*** 

Rural residence  0.0255 (0.0131)  0.0399 (0.013)** 

Food security 
status 

‐0.0841 
(0.0089)*** 

‐0.082 (0.0089)*** 

WIC  0.0891 
(0.0118)*** 

0.0912 
(0.0118)*** 

Supermarkets  ‐1.4844 
(0.1307)*** 

‐1.2773 
(0.1298)*** 

Non‐
supermarkets 

0.3349 
(0.0471)*** 

0.3707 (0.047)*** 

Full‐service 
restaurants 

‐0.2546 (0.021)***  ‐0.2409 
(0.0211)*** 

Limited‐service 
restaurants 

0.1634 
(0.0398)*** 

0.105 (0.04)** 

Poverty rate  0.3703 (0.2062)  0.6787 (0.2056)** 

Area‐level 
household 
income 

0 (0)***  0 (0)*** 
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Area‐level 
educational 
attainment 

2.3557 
(0.1154)*** 

2.1971 
(0.1156)*** 

Vehicle density  1.5702 
(0.1757)*** 

1.7215 
(0.1756)*** 

Kitchen 
availability 

18.4356 
(1.3447)*** 

15.4456 
(1.326)*** 

snap  0.2523 
(0.0095)*** 

0.234 (0.0095)*** 

SNAP‐cost 
interaction 

0.1242 
(0.0077)*** 

0.0722 
(0.0072)*** 

Intercept  ‐18.6849 
(1.2816)*** 

‐15.6937 
(1.2636)*** 

Observations  135,627 135,627

R‐squared  0.0857 0.0846
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(F) 

Covariate  Change in acquisition of protein 

Cost of living 
metric 

Overall RPP  Food RPP 

Age  0.1251 
(0.0036)*** 

0.1252 
(0.0036)*** 

Age squared  ‐0.0012 (0)***  ‐0.0012 (0)*** 

Sex (1=female)  ‐0.1747 
(0.0336)*** 

‐0.1754 
(0.0336)*** 

White race  ‐0.0035 (0.0465)  ‐0.0004 (0.0465) 

Black race  0.3895 
(0.0584)*** 

0.3927 
(0.0584)*** 

Hispanic  ‐0.3263 
(0.0452)*** 

‐0.3177 
(0.0451)*** 

Education >= 
high school 

‐0.0518 (0.0386)  ‐0.0513 (0.0386) 

Employed 
(1=yes) 

‐0.9609 
(0.0348)*** 

‐0.9614 
(0.0349)*** 

Household size  ‐0.5795 
(0.0085)*** 

‐0.5803 
(0.0085)*** 

Income ($/10^4)  ‐3.287 (1.213)**  ‐3.262 (1.213)** 

Housing cost 
($/10^4) 

2.005 (0.121)***  2.01 (0.121)*** 

Distance to 
primary food 
store 

0.0312 (0.004)***  0.0309 (0.004)*** 

Rural residence  0.4975 
(0.0465)*** 

0.4919 
(0.0464)*** 

Food security 
status 

0.0134 (0.0315)  0.0117 (0.0315) 

WIC  0.1583 
(0.0419)*** 

0.1574 
(0.0419)*** 

Supermarkets  3.0403 
(0.4652)*** 

2.9468 
(0.4615)*** 

Non‐
supermarkets 

‐0.6213 
(0.1675)*** 

‐0.6389 
(0.1671)*** 

Full‐service 
restaurants 

0.5449 
(0.0747)*** 

0.545 (0.0751)*** 

Limited‐service 
restaurants 

‐0.257 (0.1417)  ‐0.2462 (0.1423) 

Poverty rate  16.5517 
(0.7337)*** 

16.3483 
(0.731)*** 

Area‐level 
household 
income 

0 (0)***  0 (0)*** 
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Area‐level 
educational 
attainment 

2.3642 
(0.4106)*** 

2.3998 
(0.4111)*** 

Vehicle density  ‐0.6527 (0.6252)  ‐0.755 (0.6246) 

drive  1.9179 
(0.4075)*** 

2.0132 
(0.4042)*** 

Kitchen 
availability 

34.3474 
(4.7849)*** 

35.5805 
(4.7158)*** 

snap  0.9302 
(0.0338)*** 

0.9347 
(0.0338)*** 

SNAP‐cost 
interaction 

‐0.0795 (0.0276)**  ‐0.0629 (0.0255)* 

Intercept  ‐36.5534 
(4.5602)*** 

‐37.7128 
(4.4936)*** 

Observations  135,627 135,627

R‐squared  0.0861 0.0861
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(G) 

Covariate  Change in acquisition of fats and oils 

Cost of living 
metric 

Overall RPP  Food RPP 

Age  1.2836 (0.0483)***  1.2793 (0.0483)*** 

Age squared  ‐0.0116 (0.0006)***  ‐0.0115 (0.0006)*** 

Sex (1=female)  8.5377 (0.4471)***  8.5813 (0.4472)*** 

White race  0.6779 (0.6185)  0.658 (0.619) 

Black race  8.0296 (0.7769)***  7.9796 (0.7771)*** 

Hispanic  ‐12.2177 (0.6013)***  ‐12.5304 (0.5991)*** 

Education >= 
high school 

2.731 (0.5128)***  2.6981 (0.5128)*** 

Employed 
(1=yes) 

‐8.4309 (0.4634)***  ‐8.4263 (0.4634)*** 

Household size  ‐6.0662 (0.1134)***  ‐6.049 (0.1134)*** 

Income ($/10^4)  64.691 (16.125)***  63.65 (16.126)*** 

Housing cost 
($/10^4) 

36.18 (1.609)***  36.10 (1.61)*** 

Distance to 
primary food 
store 

1.6262 (0.053)***  1.6277 (0.0531)*** 

Rural residence  2.4528 (0.6183)***  2.8424 (0.6164)*** 

Food security 
status 

‐3.5758 (0.4193)***  ‐3.5475 (0.4194)*** 

WIC  0.5354 (0.5569)  0.5891 (0.5569) 

Supermarkets  ‐26.4108 (6.1854)***  ‐21.2379 (6.1372)** 

Non‐
supermarkets 

17.4438 (2.2265)***  18.2934 (2.2226)*** 

Full‐service 
restaurants 

0.882 (0.9937)  1.4132 (0.9982) 

Limited‐service 
restaurants 

‐9.7655 (1.8845)***  ‐11.695 (1.8922)*** 

Poverty rate  100.6032 
(9.7546)*** 

106.3655 
(9.7211)*** 

Area‐level 
household 
income 

0.0003 (0)***  0.0004 (0)*** 

Area‐level 
educational 
attainment 

47.6844 (5.4591)***  42.6326 (5.466)*** 

Vehicle density  ‐19.2996 (8.3124)*  ‐16.5467 (8.3057)* 

Kitchen 
availability 

389.0452 
(63.6202)*** 

310.7975 
(62.7095)*** 

snap  15.6823 (0.4499)***  15.1086 (0.4501)*** 
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SNAP‐cost 
interaction 

2.3946 (0.3664)***  0.8837 (0.3387)** 

Intercept  ‐417.3511 
(60.6323)*** 

‐336.8238 
(59.7551)*** 

Observations  135,627 135,627

R‐squared  0.0881 0.0879
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(H) 

Covariate  Change in acquisition of added sugars 

Cost of living 
metric 

Overall RPP  Food RPP 

Age  0.5216 (0.0183)***  0.5206 (0.0183)*** 

Age squared  ‐0.0058 (0.0002)***  ‐0.0058 (0.0002)*** 

Sex (1=female)  2.7438 (0.1693)***  2.7491 (0.1693)*** 

White race  3.0518 (0.2342)***  3.0349 (0.2344)*** 

Black race  4.8005 (0.2942)***  4.7817 (0.2942)*** 

Hispanic  ‐3.876 (0.2277)***  ‐3.936 (0.2268)*** 

Education >= 
high school 

0.0915 (0.1942)  0.0868 (0.1941) 

Employed 
(1=yes) 

‐3.1789 (0.1754)***  ‐3.1762 (0.1755)*** 

Household size  ‐1.4775 (0.0429)***  ‐1.4726 (0.0429)*** 

Income ($/10^4)  ‐25.384 (6.106)***  ‐25.565 (6.105)*** 

Housing cost 
($/10^4) 

6.475 (0.609)***  6.456 (0.609)*** 

Distance to 
primary food 
store 

0.5469 (0.0201)***  0.5482 (0.0201)*** 

Rural residence  1.7875 (0.2341)***  1.8355 (0.2334)*** 

Food security 
status 

‐1.5852 (0.1588)***  ‐1.5753 (0.1588)*** 

WIC  ‐3.0214 (0.2109)***  ‐3.014 (0.2108)*** 

Supermarkets  5.7006 (2.3421)*  6.4404 (2.3236)** 

Non‐
supermarkets 

8.0486 (0.843)***  8.1813 (0.8415)*** 

Full‐service 
restaurants 

‐4.3931 (0.3763)***  ‐4.366 (0.3779)*** 

Limited‐service 
restaurants 

‐3.2527 (0.7136)***  ‐3.4074 (0.7164)*** 

Poverty rate  31.4413 (3.6935)***  32.7657 (3.6804)*** 

Area‐level 
household 
income 

0 (0)***  0.0001 (0)*** 

Area‐level 
educational 
attainment 

8.1859 (2.067)***  7.7441 (2.0694)*** 

Vehicle density  ‐8.2539 (3.1474)**  ‐7.5955 (3.1445)* 

Kitchen 
availability 

107.9243 
(24.0892)*** 

97.6518 
(23.7418)*** 

snap  5.6182 (0.1703)***  5.566 (0.1704)*** 
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SNAP‐cost 
interaction 

0.5247 (0.1388)***  0.363 (0.1282)** 

Intercept  ‐110.3159 
(22.9579)*** 

‐100.2963 
(22.6232)*** 

Observations  135,627 135,627

R‐squared  0.0758 0.0758
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(I) 

Covariate  Change in kilocalories/person/day 

Cost of living 
metric 

Overall RPP  Food RPP 

Age  37.4988 (1.2033)***  37.3395 (1.2033)*** 

Age squared  ‐0.3656 (0.0142)***  ‐0.3639 (0.0142)*** 

Sex (1=female)  164.001 (11.1319)***  164.9818 (11.132)*** 

White race  80.5028 (15.3961)***  78.3529 (15.4092)*** 

Black race  104.6139 (19.2504)***  100.8695 
(19.2516)*** 

Hispanic  ‐349.8915 
(14.9167)*** 

‐357.3436 
(14.8752)*** 

Education >= 
high school 

53.8587 (12.7669)***  53.2153 (12.768)*** 

Employed 
(1=yes) 

‐262.3515 
(11.5309)*** 

‐261.7551 
(11.5323)*** 

Household size  ‐187.9727 (2.8225)***  ‐187.3265 (2.823)*** 

Income   ‐0.0343 (0.0401)  ‐0.0365 (0.0401) 

Housing cost   0.1066 (0.004)***  0.1064 (0.004)*** 

Distance to 
primary food 
store 

42.0453 (1.3207)***  42.1828 (1.3216)*** 

Rural residence  68.3213 (15.319)***  77.076 (15.2507)*** 

Food security 
status 

‐125.2916 
(10.4339)*** 

‐123.7915 (10.436)*** 

WIC  5.3686 (13.8621)  6.7269 (13.8617) 

Supermarkets  ‐461.4209 
(151.9407)** 

‐368.0763 (151.0981)* 

Non‐
supermarkets 

701.3832 (54.6747)***  714.1627 
(54.6359)*** 

Full‐service 
restaurants 

‐213.851 (22.6361)***  ‐200.1242 
(22.6236)*** 

Limited‐service 
restaurants 

‐49.6616 (43.7776)  ‐91.0862 (43.5921)* 

Poverty rate  3186.945 
(237.0871)*** 

3404.771 
(235.3594)*** 

Area‐level 
household 
income 

0.0074 (0.0009)***  0.0086 (0.0008)*** 

Area‐level 
educational 
attainment 

1180.219 
(135.8952)*** 

1102.95 
(136.0946)*** 

Vehicle density  619.1396 (99.3471)***  571.6953 
(99.2529)*** 
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Kitchen 
availability 

16412.4 (1578.274)***  14713.96 
(1551.604)*** 

snap  431.6374 (11.1895)***  422.7793 
(11.2035)*** 

Snap‐cost 
interaction  

70.4185 (9.024)***  44.5117 (8.4075)*** 

Intercept  ‐16838.61 
(1499.23)*** 

‐15121.55 
(1471.873)*** 

Observations  135,627 135,627

R‐squared  0.1077 0.1075
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(J) 

Covariate  Change in HEI score 

Cost of living 
metric 

Overall RPP  Food RPP 

Age  0.3021 (0.003)***  0.302 (0.003)*** 

Age squared  ‐0.0029 (0)***  ‐0.0029 (0)*** 

Sex (1=female)  0.956 (0.0278)***  0.9566 
(0.0278)*** 

White race  ‐0.6208 
(0.0384)*** 

‐0.6222 
(0.0384)*** 

Black race  0.2403 
(0.0482)*** 

0.2387 
(0.0482)*** 

Hispanic  0.3151 
(0.0373)*** 

0.3093 
(0.0372)*** 

Education >= 
high school 

0.1632 
(0.0318)*** 

0.1627 
(0.0318)*** 

Employed 
(1=yes) 

0.3715 
(0.0288)*** 

0.3717 
(0.0288)*** 

Household size  ‐0.0166 (0.007)*  ‐0.0161 (0.007)* 

Income ($/10^4)  ‐1.545 (1.001)  ‐1.562 (1.001) 

Housing cost 
($/10^4) 

‐0.399 (0.0999)***  ‐0.402 (0.0999)*** 

Distance to 
primary food 
store 

‐0.0137 
(0.0033)*** 

‐0.0136 
(0.0033)*** 

Rural residence  0.1918 
(0.0384)*** 

0.1968 
(0.0383)*** 

Food security 
status 

‐0.1168 (0.026)***  ‐0.1159 (0.026)*** 

WIC  0.4287 
(0.0346)*** 

0.4295 
(0.0346)*** 

Supermarkets  ‐2.0617 
(0.3839)*** 

‐1.986 (0.3809)*** 

Non‐
supermarkets 

‐0.4681 (0.1382)**  ‐0.4547 (0.1379)** 

Full‐service 
restaurants 

‐0.3384 
(0.0617)*** 

‐0.3345 
(0.0619)*** 

Limited‐service 
restaurants 

0.8095 (0.117)***  0.7909 
(0.1174)*** 

Poverty rate  ‐3.4832 
(0.6055)*** 

‐3.3591 
(0.6033)*** 

Area‐level 
household 
income 

0 (0)*  0 (0)* 
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Area‐level 
educational 
attainment 

‐1.7552 
(0.3388)*** 

‐1.8067 
(0.3392)*** 

Vehicle density  0.6007 (0.5159)  0.662 (0.5155) 

Kitchen 
availability 

‐27.8803 
(3.9488)*** 

‐28.9513 
(3.8918)*** 

snap  ‐0.118 (0.0279)***  ‐0.124 (0.0279)*** 

Snap‐cost 
interaction  

0.0495 (0.0227)*  0.0318 (0.021) 

Intercept  75.3744 
(3.7634)*** 

76.4328 
(3.7085)*** 

Observations  135,627 135,627

R‐squared  0.1645 0.1644
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Figure 1: Distributions of the cost of living, as measured by overall regional price parities for the 

year 2012, among participants in the National Household Food Acquisition and Purchase Survey 

(2012‐2013), by Supplemental Nutrition Assistance Program (SNAP) participation status and 

income level. Legend: SNAP = SNAP participants, Lo‐inc non‐SNAP = non‐participants <185% of 

the federal poverty level, and Hi‐inc non‐SNAP = non‐participants >=185% of the federal poverty 

level. 
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Figure 2: Subgroup analyses of the association between living in a high cost‐of‐living area (as 

defined by the overall regional price parity) and change in the Healthy Eating Index (HEI) 2010 

score among SNAP participants, non‐participants below 185% of the federal poverty threshold, 

and non‐participants above 185% of the federal poverty threshold. A decline in HEI score 

indicates a worse nutrition profile; the mean HEI score in the analytical sample was 55, and the 

range of possible HEI scores is 0 (worst) to 100 (best). Legend: RPP = regional price parity; 

Geoadj SPM = geographical adjustment to the Supplemental Poverty Measure. 
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Figure 3: Interactions between SNAP participation and cost of living when the outcome of 

interest is the Healthy Eating Index‐2010 score. Estimates are from an endogenous treatment 

effects parameter, estimating the average treatment effect of SNAP. Cost of living at the area 

(county) level is defined by the overall regional price parity, where high‐cost is one standard 

deviation above the mean. 
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Introduction 

Where we live matters for our health. The social, economic, and physical features of 

neighborhoods can play a powerful role in health and longevity. Neighborhood concentration of 

poverty and poor health have been shown to be linked (1).  Residing in low-income neighborhoods 

has been associated with diet related chronic diseases such as obesity and diabetes (2). 

One in seven American households, mostly those living at or below the poverty line, were 

considered food insecure in 2014, which means they were without access to enough food to lead a 

healthy life (3). Those who report being food insecure are at greater risk for poor mental health, 

obesity, and chronic disease (4). Food insecure households face several barriers to accessing food 

including: 1) living geographically too far from supermarkets or other venues selling healthy foods, 

and, 2) the cost of purchasing healthy foods is higher than households can afford. We refer to these 

barriers as the “distance problem” and the “food price problem” respectively. 

Policy interventions, such as the Health Food Financing Initiative, were designed to target 

the first barrier of reducing food deserts through incentivizing healthy food retailers to open in low-

income neighborhoods. Despite the intent of these initiatives, there has been little evidence to show 

that reducing the “distance problem” through building supermarkets in low-income communities 

has pushed the needle on changing health outcomes (5-7) or food consumption behavior (8, 9). 

The second barrier, the “food price problem,” may exacerbate the lived experience of 

household food insecurity if food prices (and cost of living) are high and wages are low. The 

Supplemental Nutrition Assistance Program (SNAP), formerly known as the Food Stamp Program 

since the 1960s, is an in-kind transfer program to help families improve their ability to purchase 

foods through normal channels of commerce and provided food-purchasing assistance for some 

46.5 million low-income U.S. households in 2014. The amount of the assistance is a function of 
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household net income, deductions, the Thrifty Food Plan (TFP), and the maximum benefit for each 

household size. The TFP represents the price of a nutritionally adequate monthly basket of food 

based on family composition, and is calculated based on national food prices. However, 

supermarket prices vary between market areas. This means that if food costs are too high within a 

given food shopping area, even participation in SNAP may not be enough to alleviate household 

food insecurity.  

 Despite the efforts to understand how the distance and food price problems have led to food 

insecurity and poor health, inconsistency of findings among these relationships remain in part 

because we knew very little about how household preferences played a role in the food purchasing 

decisions of households. Households might select to shop at a supermarket based on perception of 

food prices, proximity to the home, or some combination of these factors. Little is known about 

how perception of these factors maps with objective measures of food prices and distance.  

 Two cross-sectional studies found that participants were more likely to be obese who 

shopped at stores where (actual) prices were lower (10, 11). This is likely because obese 

participants were also likely to be lower socioeconomic status, and thus sought lower priced stores. 

If food insecurity is associated with obesity among U.S. adults, as one study showed (12), we 

anticipate that there will be an association between households preferences to shop at stores with 

low prices and food insecurity.   

 Our research aims to address understand how both the subjective experience and objective 

measures of the “distance problem” and “food price problem” are associated with household food 

insecurity and obesity. First, we estimate the association of perceived distance and low prices with 

food insecurity and obesity. Next, we estimate how objectively measured access to supermarkets – 

based on presence of supermarkets and prices – relate to food insecurity and obesity.  Specifically, 
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our research questions are as follows:   

1. Are individuals who select their primary supermarket based on perceived price or proximity 

more likely to live in a food insecure household and be obese, compared to those who select 

their primary supermarket based on both low prices and perceived proximity? 

2. Are individuals who reside in a food desert more likely to be a part of a food insecure 

household and be obese, compared to those who do not live in a food desert? 

3. Are individuals who reside in a high poverty area with higher than average supermarket 

prices are more likely to be a part of a food insecure household and be obese, compared to 

those who live in areas with low or average supermarket prices?  

Conceptual Model of Food Insecurity 

 Drawing from Barrett (2002), the lack of access to goods market can be viewed as one of 

several structural characteristics of households that increases risk of food insecurity (13). Residing 

at a great distance from a food retailer is expected to increase food insecurity by a lower access to 

the goods market by way of increasing travel costs (13, 14). Also, the combination of living in a 

high poverty neighborhood located at a great distance from food retailers (e.g., food desert) is 

expected to increase food insecurity by limiting access to the labor market (15). Finally, those with 

very low-incomes who live far from stores with affordably priced foods might experience a greater 

risk of food insecurity if they have low purchase power in their local market. Becker’s human 

capital theory (1975) and theory for demand for children (1991) suggest that food insecurity is 

directly related to household composition, income, and transfers. We expect that additional 

children in the household will increase food insecurity and additional adults will decrease food 

insecurity through household labor supply. Age, race, and sex are expected to impact household 

food insecurity through wage rate.  
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Methods 

Study Design and Subjects 

 This study uses data collected by the Economic Research Service of the United States 

Department of Agriculture, the National Household Food Acquisition and Purchase Survey 

(FoodAPS), from April 2012 to January 2013. This includes nationally representative data from 

4,826 households on household food shopping and purchasing behaviors. There were 2,015 

households (SNAP participants and non-participants) with household income below the federal 

poverty threshold. For this analysis, we included the full sample, not restricted to SNAP 

participants or low-income households.  

 We also used data from the 2010 U.S. Census, which provides detailed counts and 

characteristics of the US population, and the American Community Survey, which includes 

demographic, housing, social, and economic information from the 5-year average data from 2008 

to 2012. In addition, we used data from Nielsen TDLinx, FNS Store Tracking and Redemption 

System (STARS) sources, and Information Resources, Inc (IRI) which includes information on the 

location and type of food retailers in 2012.  

 

 

Outcomes 

 The primary outcome of interest, food security, is measured at the household level and 

takes into account whether households have enough food to eat and are able to afford balanced 

meals in the last month. This was assessed using the 10-item U.S. Adult Food Security Survey 

Module with a reference to the prior month (16). We created a binary variable of food secure (1/0) 

that was turned on if a household gave 2 or fewer responses in the affirmative.  As a sensitivity 
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analysis we also created an ordered outcome: very low (6-10), low (3-5), marginal (1-2), and high 

(0) answers in the affirmative.  

 The secondary outcome of interest, obesity, is based on a self reported measure for each 

primary respondent adult, and is a binary indicator that is turned on if the individual has a body 

mass index (BMI) of 30 kg/m2 or greater. As a sensitivity analysis, we also used the natural log of 

BMI as a continuous measure.  

Exposures 

Subjective Measure of Food Access: Determinants of Store Choice 

 Primary respondents were asked to indicate all of the main reasons for shopping at the store 

where most of the household shopping was done including options such as low prices, produce 

selection, meat department, variety of foods, variety of special foods, close to home, and 

loyalty/frequent shopper program. We created a variable that was coded 1 if the primary 

respondent selected “low prices”, 2 for “close to home” or both “low price” and “close to home” 

(0). Respondents who did not select any of these items were set as missing for purposes of this 

analysis.  

 

Objective Measure of Food Access  

 Two approaches were used to measure food access within the household’s “neighborhood.” 

First, we created a measure of a food desert which was defined as having a poverty rate of 20 

percent or greater (or the BG median income is less than or equal to 80 percent of the Metropolitan 

area median family income) and the closest supermarket is more than one mile away from the 

census block centroid (10 miles, for non-metropolitan block groups). 90% of all census block 

groups in 2010 had less than 2 square miles of land area, and the median block group was 0.2 
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square miles.  

Next, we create a similar measure at the census tract level for purposes of comparability 

with other studies. Also the census tract is the geographical unit that best represents the average 

size of a shopping area; nationwide the mean area of a census tract is 13.7 square miles and three-

quarters of all census tracts located within metropolitan statistical areas (MSAs) are less than 4.5 

square miles (17). The indicator is turned on when a participant lives in a low income census tract 

(defined by Department of Treasury’s New Markets Tax Credit program where the tract has a 

poverty rate 20 percent or greater or the tract’s median income is less than or equal to 80 percent of 

the Metropolitan area median family income) and at least 500 persons or at least 33% of the census 

tract's population live more than one mile from a supermarket or large grocery store (10 miles, for 

non-metropolitan census tracts).  

 The second measure, food tundra1, builds upon the food desert measure and reflects that 

proximity to supermarket is only a relevant criterion to characterize food access if store prices are 

not too high. First, we create two measures for each block group that reflect the weekly median and 

low cost of the Thrifty Food Plan (TFP) for a family of 4 of all store chains within three buffers (3, 

5, 10 miles) of the block group centroid during the study period. These distances were selected 

based on our descriptive estimates from Table 3. The average distance traveled to closest 

supermarket (3 miles) and primary supermarket (5 miles). Less than 1 percent of all block groups 

did not have a supermarket within 10 miles from its centroid.  

The TFP was created by the USDA’s Center for Nutrition Policy and Promotion and 

includes quantities of 29 categories of food types based on age and sex (18). The median cost 

measure was derived using the median costs per pound (after removing outliers) and the low cost 

                                                            
1 A tundra is a frozen, treeless plain that makes it difficult for plants and animals to survive. 
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measure uses the per pound price at the 10th percentile. The data was obtained from the Information 

Resources, Inc (IRI), a private company that provides retail store scanner data. Some store chains 

such as Target, Safeway, and Kroger do not report item-level prices for private label items, and are 

thus not included. More information on the specifics of the construction of this measure and its 

limitations have been published elsewhere (19). We use the median costs of only stores with all 

TFP categories. To account for missingness of categories that preclude a store’s inclusion in the 

analysis, as a sensitivity analysis we construct an alternate measure which uses the median cost of 

each category in each block group and multiplies that by the number of pounds to get a price 

measure.  

To create the measure of food tundra, which is defined having poverty rate of 20 percent or 

greater (or the BG median income is less than or equal to 80 percent of the Metropolitan area 

median family income), and having a median weekly TFP cost that is in the top quintile of all block 

groups. As an alternate measure, we substitute low cost for median cost.  

Covariates 

 Several variables were constructed that were hypothesized to influence both household food 

security and food access. This includes primary respondent characteristics such as sex (female =1, 

male =0), age at time of survey, marital status (currently married = 1, prior/never married = 0), 

race/ethnicity (0 = non-Hispanic White, 1 = Black, 2 = Hispanic, 3 = Asian), citizenship status 

(1=U.S. citizen, 0 = not U.S. Citizen), highest educational attainment (0 = bachelors degree+, 1= 

some college, 2 = high school degree, 3 = some high school), and employment status (1= employed 

in the prior month, 0= not employed), as well as household-characteristics such as monthly income 

(in $US), home ownership (1= owns home, 2= renter or other), number of children, number of 

disabled members, and number of adults.  
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Statistical Methods 

The relationship between store determinant choice or food access and food insecurity or obesity is 

specified with the general form of the model as follows: 

𝑌𝑖𝑗 = βoj + β1Aij + β2Xij + β3Wij + εij    

where 𝑌𝑖𝑗 is a measure of food insecurity or obesity in household i in census block j; βoj is the 

census block-specific intercept; Aij is a measure of store determinant choice or food access of 

household i in in census tract; 𝑋𝑖𝑗 is a vector of primary-respondent characteristics of household i 

in census tract j; 𝑊𝑖𝑗 is a vector of household-characteristics of household i in census tract j; and εij 

is the error term.   

Aj = selection of primary supermarket based on perceived price (1), distance (2), or both 

price & distance (0) or residence in a food desert (1/0) or residence in a food tundra (1/0) 

Xij = female, age, race/ethnicity, US citizen, marital status, education, employment status  

Wij = log of income, home ownership, car ownership, number of children, number of adults, 

number of disabled 

 We fit a series of logit and multinomial logit models to estimate the log odds of household 

food insecurity or adult obesity as a function of the above variables.  

Sensitivity Analyses 

We measured food security as both as a binary and ordinal outcome. Additionally, we 

measured obesity as a binary outcome and used log of BMI as an alternate measure. For 

comparability to prior research, we also estimated the effect of residing in a food desert at the 

census tract level in addition to the census block level. Next, as we were concerned with the 

robustness of the supermarket price variable, we created an alternate measure of low cost TFP in 

addition to the median cost TFP we used in our main model. In addition, as we were concerned 
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with potential bias introduced by missing stores, we created another alternate measure of the 

median cost TFP by taking the median cost of each of the 29 categories of the TFP. Finally, our 

measure of food tundra was assessed at 3 distances from the block group centroid (3, 5, and 10 

miles).  
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Table 1: Primary respondent and household characteristics   
 

 All Food Insecure Poor (<=FPL) 

Female 

Age 

18 to 24 

67.4% 
 
 

5.1% 

69.2% 
 
 

8.1% 

71.1% 
 
 

8.8% 

25 to 34 16.9% 20.3% 15.3% 

35 to 44 16.7% 20.6% 15.7% 

45 to 54 19.8% 22.4% 20.1% 

55 to 65 21.1% 16.6% 20.9% 

65+ 

Marital Status 

Currently Married 

20.2% 
 
 

44.1% 

12.0% 
 
 

28.1% 

19.0% 
 
 

25.8% 

Previously Married 33.5% 41.7% 41.8% 

Never Married 22.3% 30.2% 32.4% 

Race 

Black 13.3% 23.2% 23.1% 

White 80.1% 68.5% 67.9% 

U.S. Citizen 57.8% 47.6% 52.1% 

Educational Attainment 

Some High School 9.9% 23.6% 24.2% 

High School Diploma 25.6% 32.1% 27.1% 

Some College 33.1% 32.3% 27.8% 

Bachelor’s Degree + 31.4% 11.9% 19.7% 

Worked in Prior Week 55.6% 43.2% 30.3% 

Obesity (BMI>30) 32.0% 40.8% 34.0% 

Poor Health 17.8% 36.2% 27.9% 

SNAP Participation 13.6% 37.7% 39.5% 

Mean Monthly Household Income $5,074.63 $2,344.12 $646.76 

Owns/Leases Car 89.5% 64.3% 69.0% 

Homeowner 61.6% 30.2% 42.6% 

Moved in Past Year 

Household Size 

1 

10.9% 
 
 

33.9% 

18.5% 
 
 

37.4% 

15.2% 
 
 

45.8% 

2 27.4% 19.0% 15.9% 

3 16.5% 15.0% 12.0% 

4 13.5% 14.9% 13.7% 

5 + 8.6% 13.7% 12.6% 

Note: Survey weights applied 
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Table 2. Block Group Supermarket Price Environment (n = 748 block groups) 

 
 

Distance from Block Group Centroid 
 

  3 miles  5 miles  10 miles   
 

 

 
Number of Block Groups without any Stores 

 

 
146 

 

 
86 

 

 
30 

Number of Block Groups with Median Price 416 462 511 

Mean (Standard Deviation) of Basket Cost - Median 360.97 (59.09) 367.02 (62.39) 362.65 (57.54) 

Mean (Standard Deviation) of Basket Cost - Low 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

157.24 (23.41) 158.89 (24.62) 158.11 (21.26) 
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  Table 3: Food Environment Household Characteristics, by Food Security and Obesity   
 

 All Food Insecure Food Secure Obese Non-Obese 

Household characteristics 

Miles to closest supermarket 

Driving distance (miles) to primary supermarket 

# supermarkets within 1 mile of BG centroid 

Residence in Block Group Food Desert (%) 

Residence in Census Tract Food Desert (%) 

Residence in Food Tundraa   (%) 

Residence in top fifth most expensive environment a  (%) 

Median cost of TFP ($) 

Low cost of TFP ($) 

Determinants of Primary Store Choice (%) 

Low Prices 

Close 

Both Low Prices and Close 
 

 
Note: Standard errors are in parentheses 

 

 
3.08 (0.36) 2.49 (0.35) 3.18 (0.36) 3.42 (0.43) 2.93 (0.35) 

5.11 (0.62) 3.82 (0.38) 5.36 (0.67) 5.59 (0.59) 4.89 (0.67 

1.34 (0.17) 1.73 (0.24) 1.27 (0.16) 1.21 (0.14) 1.39 (0.19) 

4.30 (1.11) 6.56 (1.92) 3.87 (1.02) 5.62 (1.72) 3.70 (1.02) 

13.82 (2.05) 18.81 (2.61) 12.87 (2.09) 17.16 (2.09) 12.19 (2.33) 

6.29 (1.83) 12.95 (4.93) 4.93 (1.51) 6.49 (1.93) 6.16 (2.04) 

21.16 (4.62) 25.02 (5.09) 20.37 (4.76) 17.69 (4.17) 22.93 (5.09) 

363.28 (6.07) 368.10 (6.65) 362.30 (6.30) 359.04 (5.61) 365.44 (6.76) 

158.18 (2.44) 157.36 (3.07) 158.34 (2.46) 155.92 (2.49) 159.37 (2.57) 
 

 
30.1 (1.8) 40.0 (3.0) 28.2 (1.8) 32.9 (2.3) 28.5 (1.9) 

30.3 (1.3) 26.6 (2.1) 31.0 (1.3) 30.0 (2.3) 30.3 (1.6) 

22.7 (1.9) 18.9 (2.2) 23.4 (2.0) 21.7 (2.5) 23.5 (2.1) 

 

(a) Estimates from 3 miles from Block Group Centroid. N= 3,484; excludes those with no stores or missing store price data. For 5 and 10 miles, 

estimates are similar. 
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Table 4: Marginal Effects of Food Environment on Food Security 
 

 

  M1, Predictor: Tundra  M2, Predictor: Desert  M3, Predictor: Both   
 

 
 
 
Tundra (3mi) 

 
 

dy/dx 

0.070*** 

 
 

SE 

0.027 

 
 

dy/dx 

  
 

SE 

 
 

dy/dx 

0.069*** 

 
 

SE 

0.028 

Food Desert   0.013  0.023 0.007 0.023 

Female 0.012 0.014 0.012  0.015 0.012 0.014 

Age -0.001 0.001 0.001  0.001 -0.001 0.001 

White ref   ref  ref  

Black -0.023 0.019 -0.021 0.019 -0.023 0.019 

Hispanic 0.029 0.025 0.035 0.025 0.030 0.025 

Other 0.039* 0.02 0.039 0.020 0.040 0.020 

US Citizen 0.009 0.029 0.011 0.029 0.009 0.029 

Married -0.063*** 0.013 -0.063*** 0.013 -0.063*** 0.013 

< HS ref  ref  ref  

High School -0.081*** 0.017 -0.081*** 0.0169 0.081*** 0.017 

Some College -0.099*** 0.018 -0.099*** 0.0176 -0.100*** 0.017 

Bachelors + -0.238*** 0.022 -0.238*** 0.022 -0.237*** 0.022 

Owns Car -0.036** 0.017 -0.041** 0.017 -0.036** 0.018 

Renter 0.137*** 0.015 0.139*** 0.015 0.137*** 0.0159 

Unemployed 0.059*** 0.019 0.061*** 0.019 0.0591*** 0.019 

Income (log) -0.017*** 0.003 -0.017*** 0.002 -0.017*** 0.003 

# Adults 0.027*** 0.006 0.028*** 0.006 0.027*** 0.006 

# Children 0.012*** 0.006 0.012** 0.006 0.012** 0.006 

# Disabled 0.159*** 0.013 0.159*** 0.014 0.159*** 0.014 

 

Note: *p<0.1, **p<0.05, ***p<0.01. All models included robust standard errors clustered at the 

Census Block Group. Models fit with logit produced similar results to probit estimates. Number 

of Households is 4,826. Missing-Indicator approach was used. Results were nearly identical 

with complete case analysis, including sampling weights, and adjusting for region. 
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Figure 1: Proportion of Block Groups in each Geographic Region, by Food Price 

Environment 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2: Proportion of Rural and Urban Block Groups in High (Top 5th) Food Price 

Environment 
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Figure 3: Proportion of Income on Housing, by Price Environment 

 

 

Figure 4: Household Reasons for Selecting Primary Supermarket, by Food Security and 

Obesity 
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Figure 5: Predictive Margins of Food Insecurity (Binary) with 95% CI, by Reasons for 

Shopping at Primary Store 

 
Note: Reference group (not shown) is “other” reasons for selecting primary store. Graph shows the marginal 
effects 
after a logit model adjusted for full set of covariates, with robust standard errors clustered at the block group. 95% 
confidence intervals that cross zero are not statistically significant. 

 
Figure 6: Predictive Margins of Food Insecurity (Binary) with 95% CI, by Shopping at 

Primary Store for Low Prices 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: Reference group (not shown) is not selecting “low prices” are reason for shopping at primary store. Graph 
shows the marginal effects after a logit model adjusted for full set of covariates, with robust standard errors clustered 
at the block group. 95% confidence intervals that cross zero are not statistically significant. 
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Figure 7: Predictive Margins of Obesity (Binary) with 95% CI, by Reasons for Shopping at 

Primary Store 

 
Note: Reference group (not shown) is “other” reasons for selecting primary store. Graph shows the marginal effects after a logit model 

adjusted for full set of covariates, with robust standard errors clustered at the block group. 95% 

confidence intervals that cross zero are not statistically significant. 

 
Figure 8: Predictive Margins of Obesity (Binary) with 95% CI, by Shopping at Primary 

Store for Low Prices 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: Reference group (not shown) is not selecting “low prices” are reason for shopping at primary store. Graph 
shows the marginal effects after a logit model adjusted for full set of covariates, with robust standard errors clustered 
at the block group. 95% confidence intervals that cross zero are not statistically significant. 
 



Food APS Research at UKCPR – Page 176  

 
 

Figure 9: Predictive Margins of Food Security (Ordinal) with 95% CI, by Food Desert 
(Block Group) 

 
Note: Graph shows the marginal effects of living in a food desert on high, marginal, low, and very low food security 

after a multinomial logit model adjusted for full set of covariates, with robust standard errors clustered at the block 
group. 95% confidence intervals that cross zero are not statistically significant. 

 
Figure 10: Predictive Margins of Food Insecurity (Binary) in Poor Block Groups with 95% 

CI, by Food Tundra (3mi) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Note: Reference group (not shown) is not residing in a block group with food prices in top 5th. Graph shows the 

marginal effects of food insecurity after a logit model adjusted for full set of covariates, with robust standard errors 

clustered at the block group. 95% confidence intervals that cross zero are not statistically significant. 

 



Food APS Research at UKCPR – Page 177  

 

 

Figure 11: Predictive Margins of Food Security (Ordinal) with 95% CI, by Food Tundra 

(3mi) 

 

Note: Graph shows the marginal effects of residing in a food tundra (3mi) on high, marginal, low, and very low food 

security after a multinomial logit model adjusted for full set of covariates, with robust standard errors clustered at 

the block group. 95% confidence intervals that cross zero are not statistically significant. 

 
Figure 12: Predictive Margins of Food Security (Ordinal) in Poor Block Groups with 95% 

CI, by Food Tundra (3mi) 

 

Note: Graph shows the marginal effects of residing in a food tundra on high, marginal, low, and very low food 

security among residents of poor block groups after a multinomial logit model adjusted for full set of covariates, 

with robust standard errors clustered at the block group. 95% confidence intervals that cross zero are not statistically 

significant. 
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Figure 13: Predictive Margins of Food Security (Ordinal) with 95% CI, by Food Tundra 

(5mi) 

 
Note: Graph shows the marginal effects of residing in a food tundra (5mi) on high, marginal, low, and very low food 

security after a multinomial logit model adjusted for full set of covariates, with robust standard errors clustered at 

the block group. 95% confidence intervals that cross zero are not statistically significant. 

 
Figure 14: Predictive Margins of Food Security (Ordinal) with 95% CI, by Food Tundra 

(10mi) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: Graph shows the marginal effects of residing in a food tundra (10mi) on high, marginal, low, and very low 

food security after a multinomial logit model adjusted for full set of covariates, with robust standard errors clustered 

at the block group. 95% confidence intervals that cross zero are not statistically significant. 
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Figure 15: Predictive Margins of BMI (log) with 95% CI, by Reasons for Shopping at 

Primary Store 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: Reference group (not shown) is “other” reason.  Graph shows the marginal effects of shopping at a primary 
store on the log of BMI after a linear model adjusted for full set of covariates, with robust standard errors clustered 
at the block group. 95% confidence intervals that cross zero are not statistically significant. 
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Appendix 

 
Figure A1: Mean and Standard Deviation of County Weekly Store-Level Basket Prices 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Note: The weekly Thrifty Food Plan (TFP) store-level basket prices were created from IRI store sales data using 

both the Universal Product Code (UPC) and random-weight purchases. For stores that do not report store-level 

sales, data from aggregate sales at a Regional Market Area (RMA) level was used. The median price was weighted 

by the TFP category weights for a family of four (male 19 to 50, female 19 to 50, child age 6 to 8, child age 9 to 

11) for each TFP category. 
 

 
 
 
 
 

Figure A2: Mean and Standard Deviation of County Weekly Low Store-Level Basket 

Prices 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: The weekly Thrifty Food Plan (TFP) store-level basket prices were created from IRI store sales data using 

both the Universal Product Code (UPC) and random-weight purchases. For stores that do not report store-level 

sales, data from aggregate sales at a Regional Market Area (RMA) level was used. To create the “low-cost food basket” 

measure, the 10th percentile of price for each category was adjusted by the TFP category weights for a family of four 

(male 19 to 50, female 19 to 50, child age 6 to 8, child age 9 to 11) 



Food APS Research at UKCPR – Page 181 
 

 

 

The Effect of Food Price on Food Insecurity and Diet Quality:  

Exploring Potential Moderating Roles of SNAP and Consumer 

Competency 
 

By 

Yunhee Chang, University of Mississippi 

 

Jinhee Kim, University of Maryland 

 

Swarn Chatterjee, University of Georgia 
 
 
 
 
 

Abstract 

Higher food prices may aggravate household food insecurity and hurt diet quality. Using a 

sample of low-income households from the National Household Food Acquisition and 

Purchase Survey (FoodAPS), this study examines whether local food prices affect food 

insecurity and nutritional quality of foods acquired, and how households use competent 

consumer behaviors to mitigate any adverse effects of price. Financial management practices, 

nutrition literacy, and conscientious food shopping practices were considered for consumer 

competency. Our findings indicate that low-income households in higher-cost areas, 

regardless of whether they participate in SNAP or not, are more likely to adopt loyalty or 

other store savings programs than those in areas where food cost is relatively lower. Also, 

controlling for local food cost and various household characteristics, SNAP participants are 

more likely to use loyalty programs or other store savings, and are more likely to be aware of 

the dietary guidelines than nonparticipants. Our findings suggest that, although theoretically 

households could benefit from various consumer competencies and skills especially when the 

food cost is high, taking advantage of competent consumption strategies may be out of reach 

for many low-income consumers dealing with high food cost. Further, policies that incentivize 

competent or conscientious consumption among program participants might decrease food 

insecurity but likely at the expense of lowered nutritional quality of acquired foods, as long as 

less healthy food choices are also less expensive.  
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Executive summary 

Introduction: Households living in high food price areas are more likely to suffer food 

insecurity (Gregory & Coleman-Jensen, 2013) and may also be priced out of healthy food 

options. This study takes advantage of detailed food acquisition and purchase records and 

geographic indicators in the FoodAPS data to explore whether local food price affects low-

income households’ risk of food insecurity as well as nutritional quality of foods acquired, and 

how households that are faced with high food cost in the area use competent consumption 

behaviors to maintain food security and diet quality.  

Methods: To assess whether low-income households in high food price areas are more 

likely to display competent consumption behaviors, dichotomous variables of behaviors 

representing consumer competency are regressed over the local-level food price, along with 

various household characteristics as controls. Because price varies across the year and was 

measured for the given time period during which each household’s food acquisition was 

recorded, time-specific fixed effect term is included. To see if SNAP participants and 

nonparticipants respond differently to high cost of food, an interaction term is included. Logit 

models were estimated. To examine whether consumer competency alleviates the adverse effect 

of high food cost on nutritional outcomes, food insecurity and diet quality variables were each 

regressed over local basket price, consumer competency indicators, SNAP participation, 

household characteristics, and week fixed effects. 

Data: The study uses data from the USDA’s National Household Food Acquisition and 

Purchase Survey (FoodAPS). A sample of 1,908 households, who had incomes below 185% of 

the federal poverty level and reported at least one event of grocery shopping during the seven-

day reporting period were used for analysis. The food insecurity status was determined based on 
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the 30-day adult food security survey module. A series of nutritional quality measures were 

computed by aggregating food component and nutrient information of all food items acquired by 

the household during the seven-day reporting period. Indicators for three areas of consumer 

competency pertinent to food purchase, including financial competency, nutrition literacy, and 

conscientious buying, were constructed based on survey responses as well as records of food 

acquisition events. Four alternate measures of local cost of aggregate food categories comprising 

Thrifty Food Plan (TFP) were obtained from the geographic component (FoodAPS-GC) and 

matched to household level data based on location of the household and the timing (week) of the 

survey. 

Results: The results indicate that basket price were negatively associated with financial 

management practices, shopping with a grocery list, coupon use, and using nutrition facts labels, 

after controlling for the household characteristics, food environment, and the weekly fixed 

effects. On the other hand, high food cost in the area was strongly correlated with households’ 

increased use of loyalty programs or other store savings. While we suspect the disturbing 

negative associations largely reflect endogeneity or reverse causality, we find that these negative 

associations between food cost and consumer competency were not as pronounced among SNAP 

participants as they were with nonparticipants. Controlling for consumer competency, we find 

little evidence that food cost affects the risk of food insecurity. local food cost lowers the whole-

grain content of the acquired foods, but it also significantly lowers sodium density of acquired 

foods.  

Discussion: Our findings indicate that low-income households in higher-cost areas, 

regardless of whether they participate in SNAP or not, are more likely to adopt loyalty or other 

store savings programs than those in areas where food cost is relatively lower. Also, controlling 
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for local food cost and various household characteristics, SNAP participants are more likely to 

use loyalty programs or other store savings, and are more likely to be aware of the dietary 

guidelines than nonparticipants.  

Conclusion: Our findings suggest that, although theoretically households could benefit 

from various consumer competencies and skills especially when the food cost is high, taking 

advantage of competent consumption strategies may be out of reach for many low-income 

consumers dealing with high food cost. Further, policies that incentivize competent or 

conscientious consumption among program participants might decrease food insecurity but likely 

at the expense of lowered nutritional quality of acquired foods, as long as less healthy food 

choices are also less expensive. 
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Introduction 

Households living in high food price areas are more likely to suffer food insecurity 

(Gregory & Coleman-Jensen, 2013) and may also be priced out of healthy food options. This 

study takes advantage of detailed food acquisition and purchase records and geographic 

indicators in the FoodAPS data to explore whether local food price affects low-income 

households’ risk of food insecurity as well as nutritional quality of foods acquired, and how 

households that are faced with high food cost in the area use competent consumption behaviors 

to maintain food security and diet quality.  

Millions of Americans are challenged with food insecurity -- a condition of insufficient 

access to food due to resource constraint. In 2014, 14% of U.S. households (17.4 million 

households) were food insecure (Coleman-Jensen, Rabbitt, Gregory, & Singh, 2015). Whereas 

recent studies found that SNAP participation decreases food insecurity (Borjas, 2004; Li, Mills, 

Davis, & Mykerezi, 2014; Nord & Golla, 2009; Shaefer & Gutierrez, 2013), the rate of food 

insecurity among SNAP participants is still high (Nord, Coleman-Jensen, Andrews, & Carlson, 

2010). Although food insecurity is a condition strongly associated with poverty and income 

volatility (Loopstra & Tarasuk, 2013), income alone may be an imperfect predictor of food 

insecurity. Research has found that households’ competency as consumers may help them avoid 

food insecurity. Low-to-moderate-income households who had better financial management 

practices or greater financial literacy were less likely to be food insecure than others (Gaines, 

Robb, Knol, & Sickler, 2014; Gundersen & Garasky, 2012; Millimet, McDonough, & Fomby, 

2015). Other skills and behaviors such as food budgeting, food shopping, and food resource 

management have also been linked to adequate food access (Kaiser et al., 2015; Lohse, Belue, 

Smith, Wamboldt, & Cunningham-Sabo, 2015).  
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Besides food insecurity, improving the dietary quality of low-income population is 

another goal of food assistance programs such as SNAP (Bitler, 2014). Poor diet quality is often 

associated with food insecurity; however, food insecurity may not directly determine poor diet 

quality (Bhattacharya, Currie, & Haider, 2004). Faced with high food price, households with 

limited resources may use various coping strategies to acquire healthful foods. Existing literature 

identified various consumer competencies that relate to improved dietary intake. Not only that 

eating competence, nutrition knowledge, and health literacy were associated with dietary intake 

(Lohse, Bailey, Krall, Wall, & Mitchell, 2012; Spronk, Kullen, Burdon, & O’Connor, 2014; 

Wardle, Parmenter, & Waller, 2000; Zoellner et al., 2011), perceived consumer effectiveness and 

food shopping practices such as label use or shopping with a grocery list have been found to 

predict better dietary quality especially among low-income individuals (Dubowitz, Cohen, 

Huang, Beckman, & Collins, 2015; Hersey et al., 2001; Kim, Nayga, & Capps, 2000; Vermeir & 

Verbeke, 2006; Wiig & Smith, 2009). 

Although many research findings provided evidence that consumer competency is an 

important determinant of food security and diet quality and implied an argument for 

incorporating resource management skills in the nutrition education curricula for program 

participants such as SNAP-ED, more knowledge of the role of consumer competency in 

improving food insecurity and nutrition among limited-resource households is desired for at least 

two reasons. First, current understanding of the role of consumer competency is based on studies 

that each investigated the relationship between a particular aspect of consumer competency and 

its targeted nutritional outcome. Little is known about how consumer strategies to secure a 

sufficient quantity of foods (e.g., money-saving, budget-stretching techniques) are associated 

with the nutritional quality of foods consumed, or how households’ abilities and efforts to 
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acquire and consume healthful foods may affect their food insecurity. Second, the vast majority 

of existing research regarding consumer competency and shopping behaviors relied on local data 

or limited geographic scope and therefore lacked the ability to observe whether households in 

high cost areas are more likely to display competent consumer behaviors than those in low cost 

areas. More needs to be known regarding how the cost of food affects nutritional quality of foods 

consumed by low-income households, and how this potential effect of food cost interacts with 

consumer competency. If households use coping strategies such as competent consumer behavior 

in response to high food cost, a crude estimate of the effect of food cost on food security and 

nutritional outcomes or the effects of consumer competency might be an underestimation.  

This study extends the literature by considering a wide array of consumer competencies 

and explores how they are associated with both food security and nutritional quality of foods that 

low-income households buy. It also examines whether low-income households in higher-cost 

areas are more likely to engage in competent consumer behaviors to counteract the price 

disadvantage. This study also examines whether SNAP participants are different from 

nonparticipants in terms of consumer competency. If SNAP participants are less competent, it 

should be examined whether SNAP replaces desirable behaviors or it’s just that different people 

choose different strategies – between program reliance and consumer competency. 

Consumer Competency 

Consumers’ skills and abilities in managing resources can avoid food insecurity. These 

include financial management, food resource management, and nutrition literacy. A few recent 

studies argue that nutrition education for low-income audience should incorporate food resource 

management (e.g., food budgeting and food shopping), to help them best manage their food 

dollars to afford healthy food (Kaiser et al., 2015; Lohse et al., 2015; Wiig & Smith, 2008). 
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Improving food resource management skills through effective nutrition education programs 

could enhance food security of low-income households (Kaiser et al. 2015; Lohse et al., 2015). 

Additionally, nutrition literacy, “the degree to which individuals have the capacity to obtain, 

process, and understand nutrition information and skills needed to make appropriate nutrition 

decisions” has been linked to nutrition outcomes such as diet quality (Zoellner, Connell, Bounds, 

et al., 2009). Health literacy is associated with healthy eating as well as sugar-sweetened 

beverage intake (Zoellner et al., 2011). While nutrition is a key part of health literacy, other 

studies examined nutrition knowledge and its relationship with diet quality (Spronk et al., 2014). 

With the comprehensive literature review, Spronk et al. found the association between nutrition 

knowledge and dietary intake most often a higher intake of fruit and vegetables. However, they 

noted the heterogeneity in assessing nutrition knowledge and dietary quality (Spronk et al., 

2014). Additionally, food shopping practice has been associated with dietary quality of low 

income women (Hersey et al., 2001). Worrying about money for food is negatively associated 

with eating competence (Lohse, et al., 2012). Therefore, nutrition education for low-income 

individuals often includes food shopping and food resource management in order to enhance the 

nutrition quality.   

A substantial number of low-income families already engage in various thrifty food 

shopping practices (Dachner, Ricciuto, Kirpatrick, & Tarasuk, 2010; Hersey, et al., 2001). 

However, despite the efforts to maximize food dollars, many households could not afford to 

purchase enough healthy diet (Dachner et al., 2010). Moreover, Kaiser et al. (2015) found that 

improvement in resource management skills was associated with reduced food insecurity only 

among participants who received SNAP benefits. They suggest that both SNAP participation and 

education on food resource management are needed to reduce food insecurity (Kaiser et al., 
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2015). The effects of consumer competency may vary by the resources, including SNAP, which 

low-income households may have access to. The results will provide policy implications with 

more complete knowledge of how “consumer competency” serves as tools for low-income 

households in dealing with food insecurity and diet quality. 

Utilizing the data from the newly available USDA’s National Household Food 

Acquisition and Purchase Survey (FoodAPS), this study examines the roles of SNAP and 

consumer competency such as financial management, nutrition literacy, and conscientious food 

shopping in household food insecurity and nutritional quality of acquired foods. 

SNAP 

Estimating the impacts of SNAP in addressing food insecurity has been challenged with 

endogeneity or selection bias (Gundersen et al., 2011; Li, Mills, Davis, & Mykerezi, 2014; 

Shafer & Gutierrez, 2013). With attempts to address this issue, However, unobserved differences 

between food insecure and food secure households have been noted. Further the impact of SNAP 

on nutrition quality has been more complicated. Low-income families are faced with 

overwhelming challenge feeding the family at low cost. Low-cost energy dense foods are often 

one strategy to choose and prepare food family to ensure no one in family goes hungry (Basiotis, 

Kramer-LeBlan, & Kennedy, 1998; Drewnowski, 2004). Evidence of how SNAP affects diet 

quality has been mixed.  

Estimated effects range from modest improvement in healthy food consumption to 

contributing to unhealthy diet and obesity (Bitler, 2014; DeBono, Ross, Berrang-Ford, 2012; 

Gregory, Ver Ploeg, Andrews, & Coleman-Jensen, 2012; Whitmore, 2002; Zagorsky & Smith, 

2009). Overall, research on the nutrition effects of SNAP has been challenged with selection 

bias.  
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Other Factors 

Food insecurity is a public concern due to adverse health outcomes. Food insecurity has 

been associated with race/ethnicity, marital status, education, age, home ownership, presence of 

children, income, asset ownership, and others (Gundersen, Kreider & Pepper, 2011). Individuals’ 

health and diet conditions have bidirectional relationship with food insecurity. Furthermore, food 

access and food environment has been considered as a causal factor of behaviors related to 

nutrition and health (McKinnon et al., 2009). Participation in other assistance programs such as 

WIC or National School Lunch Program was also found to ameliorate food insecurity.  

Methods 

To assess whether low-income households in high food price areas are more likely to 

display competent consumption behaviors, dichotomous variables of behaviors representing 

consumer competency are regressed over the local-level food price, along with various 

household characteristics as controls. That is, 

𝑪𝒊𝒋
∗ = 𝛼1𝑃𝑟𝑖𝑐𝑒𝑗𝑡 + 𝛼2𝑆𝑁𝐴𝑃𝑖𝑗 + 𝑿𝒊𝒋′𝜶𝟑 + 𝜸𝒕 

where C* is the latent values of consumer competency, Price is the local average cost of a 

standard food basket in US dollars, SNAP is a dichotomous variable for the household’s SNAP 

participation, X is a vector of household characteristics, and i, j, and t index households, 

geographic location, and time, respectively. Because price varies across the year and was 

measured for the given time period during which each household’s food acquisition was 

recorded, time-specific fixed effect term is included. The regression coefficients α1...3 are 

estimated in Logit models. If high food price makes households use more competent 

consumption behaviors, α1 will be positive. We also estimate this with state policy and 

administrative indicators as instrumental variables for SNAP to assess the causal effect of SNAP 
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participation on consumer competency.  

To see if SNAP participants and nonparticipants respond differently to high cost of food, 

the above equation is modified to include an interaction term: 

𝑪𝒊𝒋
∗ = 𝛼1𝑃𝑟𝑖𝑐𝑒𝑗𝑡 + 𝛼2𝑆𝑁𝐴𝑃𝑖𝑗 + 𝛼3𝑆𝑁𝐴𝑃𝑖𝑗 ∗ 𝑃𝑟𝑖𝑐𝑒𝑗 + 𝑿𝒊𝒋′𝜶𝟒 + 𝜸𝒕. 

The coefficient α3 is expected be negative if SNAP participants are less likely than 

nonparticipants to respond to high cost of food.  

Our main research objectives include whether consumer competency alleviates the 

adverse effect of high food cost on nutritional outcomes, namely food security and nutritional 

quality of acquired food. We first estimate the relationship between food cost and the outcome 

measures: 

𝒀𝒊𝒋
∗ = 𝛽1𝑃𝑟𝑖𝑐𝑒𝑗𝑡 + 𝑪𝒊𝒋

′ 𝜷𝟐 + 𝛽3𝑆𝑁𝐴𝑃𝑖𝑗 + 𝑿𝒊𝒋
′ 𝜷𝟒 + 𝜸𝒕 

For the food insecurity equation, Y* denotes the latent variable of food insecurity, so that 

Y=1 if Y*>0, and Y=0 otherwise; and the coefficients are estimated with Logit models. For the 

outcome of nutritional quality, this equation is estimated in linear regressions. The coefficient β2 

denotes the association between consumer competency and the outcome measures. We estimate 

this regression model with and without the consumer competency term, so that the change in the 

coefficient β1 would assess the mediating role of competency. 

Data 

The study uses data from the USDA’s National Household Food Acquisition and 

Purchase Survey (FoodAPS). The FoodAPS is a survey of a nationally representative sample of 

households on their food acquisition. The data contain detailed records of the participating 

households’ food acquisition activities during the seven-day reporting period including groceries 

as well as foods eaten outside the home by household members. The data also include in-depth 
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interviews of households’ main food shoppers or meal planners about on usual food acquisition 

behavior, places of food acquisition, expenditures, food security status, nutrition knowledge, 

program participation, and socio-demographic information. Based on the seven-day food 

acquisition record, the amount and types of foods and nutrients acquired were also computed. 

Among household main data files, we use the household file, individual file, food-at-home event 

file, and food-at-home nutrient file. The FoodAPS files store some of this information at levels 

as specific as food acquisition event or individual food item, which we summarize at the 

household level before merging. We also extract food price and other relevant food 

environmental information from the FoodAPS’s Geography Component data files. These 

geographic files are merged to household main data using the household geocodes data file. 

Of 4,826 participating households, we excluded 581 households that did not report any 

grocery shopping during the seven-day reporting period or reported buying only one food item of 

zero calorie. Additional 122 households had missing values in key variables and 216 households 

had no price data, and had to be dropped. The sample was further reduced to those with incomes 

below 185% of the federal poverty level (FPL). After dropping these observations, a total of 

1,908 households comprised our final sample for analysis. Sampling weights were applied to 

represent the given population. 

Variables 

Food Insecurity   

The food insecurity status was determined by the interview data using the 30-day adult 

food security module developed by the USDA’s Economic Research Service. Following the 

USDA definition, households were classified into four categories: food security, marginal food 

security, low food security, and very low food security based on the number of affirmative 
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responses. This study defines the dichotomous variable of food insecurity as belonging to either 

low or very low food security. We also use the dichotomous variable of very low food security as 

an additional outcome measure. The FoodAPS did not measure child food insecurity, but given 

not all households have children, adult food insecurity may be a fair and comparable measure for 

the entire sample. 

Nutritional Quality of Acquired Foods  

We construct a series of nutritional quality measures at the household level by 

aggregating food component and nutrient information of all food items acquired by the 

household during the seven-day reporting period. The quality of acquired food used as a proxy 

for diet quality is justified by the literature that found home availability is among the strongest 

correlates of food intake (Neumark-Stzainer et al, 2003; Story et al, 2008). However, compared 

to food-intake diaries, food acquisition records may have three or more limitations in 

representing one’s diet quality. First, acquisition is at the household-level, thus individual-level 

food consumption is unknown. Despite our control for household size and composition, intra-

household distribution of foods and nutrients remains unknown. Second, it is uncertain to the 

researchers over what period the acquired food was consumed (e.g., a box of dry pasta might be 

consumed over several months in one household and in one night in another household). Without 

knowing each household’s frequency of food acquisition, we attempt to maximize accuracy by 

controlling for household size, usual dine-out frequency, and presence of recent meal guests. We 

also believe that the items that are consumed over a longer period are purchased less frequently, 

and therefore averages may still be accurate. Third, the portion of the acquired foods that gets 

consumed or if the food is consumed at all is also unknown (e.g., a half bag of fresh vegetable 

might be thrown away uneaten). Lack of information for food waste introduces a potential bias 
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because food acquisition data will likely overstate consumption of perishable fresh foods more 

than consumption of nonperishable processed foods. One shortcoming of this study is we only 

analyze foods to be consumed at home because food-away-from-home nutrient data are 

unavailable at this point. 

SNAP 

 Participation in SNAP is coded as 1 if anyone in the household currently receives SNAP 

benefits, and 0 otherwise. In the FoodAPS, this variable was created based on survey responses 

and confirmed by the system match to the SNAP administrative database. 

Consumer Competency   

This study investigates three competency areas pertinent to food purchase, including 

financial competency, nutrition literacy, and conscientious buying. 

Three variables of financial competency were created. First, Financial Management is a 

continuous variable, which is a mean of responses to four questions: “how often household 

reviews bills for accuracy”, “how often household pays bills on time”, “how often household 

pays more than minimum payment”, and household’s reported financial condition. Each of these 

was recorded on a 5-point scale, with greater values meaning better management. Second, No 

Default is a dichotomous variable indicating the respondent disagreed to all three statements: 

“could not pay rent/mortgage, utility, or important medical bill within last 6 months”, “evicted 

for not paying rent/mortgage within last 6 months”, and “could not pay full amount of utility 

bills within last 6 months”.  If the household experienced any of these within the last 6 months of 

the survey, the variable was coded 0. Third, No Loan variable is a dichotomous measure 

indicating the household has not taken any credit card cash advance or payday-like loans within 

last 6 months. Defaulting payments or taking out short-term loans can signify unsound financial 
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practices, or it can simply be a reflection of hardship. Therefore, we also estimate models with 

the financial management variable only, without these two variables. 

Several survey questions were combined to create three dichotomous variables indicating 

nutrition literacy. They are: respondent has heard of dietary guidelines, such as MyPlate or 

MyPyramid (Know Guideline); respondent attempts to follow MyPlate or MyPyramid 

recommendations (Follow Guideline); and respondent uses the nutrition facts panel on food 

product packaging most of the time or always (Use Panel). 

In addition to financial literacy and nutrition literacy, conscientious or frugal buying 

behavior can imply competency in consumption. In this study we use three indicators: whether 

they shop with a grocery list at least most of the time (Grocery List), whether they used any 

coupons (Coupons), and whether they used any other types of store savings (Store Savings). 

Whereas Grocery List was based on a questionnaire item about usual behavior, the variables 

Coupons and Store Savings were based on actual use reported or observed in the food acquisition 

events during the seven-day reporting period. 

Food Cost  

Local cost of aggregate food categories comprising Thrifty Food Plan (TFP) was 

obtained from the geographic component (FoodAPS-GC) and matched to household level data 

based on location of the household and the timing (week) of the survey. Cost of food was 

measured at two different geographic levels – (i) average market basket price of participating 

retailers in the given county, and (ii) average market basket price of participating retailers that 

are within 20 miles of the Census block group centroid. Also, the cost was assessed as average of 

the median basket price at each of the stores, and an average of the low-cost basket price.  
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Results 

Descriptive Statistics 

The descriptive statistics from table 1 indicate that a significantly higher portion of 

respondents who reported being food insecure (49%) and very food insecure (22%) were SNAP 

participants as compared to those who were food insecure (28%) and very food insecure (13%) 

but did not participate in SNAP. A significantly higher percentage of respondents who consumed 

‘solid fats, alcohol, and added sugar’ (SoFAAS) also reported being SNAP (40%) when 

compared to those who did not participate in SNAP (36%). Additionally, a higher percentage of 

individuals who reported good financial management practices were SNAP participants. Among 

those respondents who shopped with a grocery list 49% were not SNAP participants while 39% 

were SNAP participants.  

The additional summary statistics are shown in table 2. The SNAP participants on 

average are younger in age (46) than the non-SNAP participants (54).  Among all participants 

under 185% of FPL, a higher percentage among the Black (26%) and Hispanic (23%) 

respondents were SNAP participants as compared to the Black (14%) and Hispanic (19%) 

respondents who were not SNAP participants. Among respondents with educational attainment 

of high school or lower a higher percentage were SNAP participants, while for respondents with 

educational attainment of higher than high school a higher percentage were non-SNAP 

participants. Similarly, higher percentages among respondents who were single or never married, 

or were divorced were SNAP participants, whereas a higher percentage among respondents who 

were either married or widowed was non-SNAP participants. Among respondents with a child in 

school 40% were SNAP participants, whereas 25% were non-SNAP participants. A higher 

percentage of homeowners and vehicle owners were non-SNAP participants, while a lower 
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percentage of homeowners and vehicle owners were SNAP participants. Among those who 

reported poor health approximately 50% were SNAP participants while 31% were non-SNAP 

participants.  

Financial Management Practices: Implications for Food Price 

Table 3A shows the results of the logistic regression analysis with the different financial 

management variables assigned as the dependent variables. The results indicate that county 

average median basket price and block group average median basket price were negatively 

associated with the likelihood of paying bills on time after controlling for the household 

characteristics, food environment, and the weekly fixed effects. Similarly block group average 

median basket price was also positively associated with the participants’ likelihood of making 

more than minimum payments on revolving debt both before and after controlling for the 

household characteristics, food environment, and the weekly fixed effects. 

Conscientious Buying and Nutrition Literacy: Implications of Food Price 

Table 3B shows the results of the logistic regression analysis with the different 

conscientious shopping practices assigned as dependent variables. The results indicate that 

county average median and low cost basket price variables, and the block group average median 

and block group average low cost basket variables were negatively associated with shopping 

using a grocery list both before and after controlling for the household characteristics, food 

environment, and the weekly fixed effects. Similarly, the county average median and low cost 

basket prices were negatively associated with the participants’ use of coupons when shopping for 

food when the household characteristics, food environment, and the weekly fixed effects were 

included in the model. Interestingly, the county average median and low cost basket price 

variables, and the block group average median and block group average low cost basket 
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variables were positively associated with consumers’ using loyalty or other stores savings cards 

both before and after controlling for the household characteristics, food environment, and the 

weekly fixed effects. Conversely, the county average median basket price was negatively 

associated with the use of nutrition facts labels by the respondents.  

Financial Management Practices: Implications of Food Price and SNAP 

Table 4A shows the results of the logistic regression analyses for the various financial 

management practices after controlling for the SNAP participation. The model also controls for 

the county and block level average median and low cost basket variables, the household 

characteristics, food environment, and the weekly fixed effects. The results indicate that when 

the model includes SNAP participation and the county level average median variable and the 

interaction of the two, SNAP participation is negatively associated with being in good financial 

condition, but the significance of this variable goes away once the household characteristics, 

food environment, and the weekly fixed effects are included in the model. Similarly, the county 

average median basket and SNAP participation was negatively associated with reviewing the bill 

once a purchase has been done.  The SNAP variable, however, was not significant once the 

household characteristics, food environment, and the weekly fixed effects were included in the 

model. Similarly, SNAP participation was also negatively associated with the other desirable 

financial management practices such as paying bills on time, paying more than the minimum 

requirement on revolving credit, and non-participation in payday loans. The block group average 

median basket was negatively associated with being in good financial condition, reviewing bills, 

paying bills on time, and not participating in payday loans. However, these differences went 

away once the household characteristics, food environment, and the weekly fixed effects were 

included in the model.  The interaction of SNAP participation and block group average median 
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price was positively associated with reviewing bills and non-participation in the payday loan 

markets.  

Conscientious Buying and Nutrition Literacy: Implications of Food Price and SNAP 

Tables 4B shows the results of the logistic regression analyses for the various 

conscientious buying practices and SNAP participation. The model also controls for the county 

and block level average median and low cost basket variables, the household characteristics, 

food environment, and the weekly fixed effects. The results indicate that when the model 

includes SNAP participation and the county level average median basket price variable and the 

interaction of the two, SNAP participation is negatively associated in shopping with a grocery 

list, the county level average median basket price is also significant and negatively associated 

with shopping with a grocery list. However, the interaction term of SNAP participation and 

county average median basket price was positively associated with having a grocery list when 

shopping even after controlling for the household characteristics, food environment, and weekly 

fixed effects in the model, and for following guideline when the household characteristics, food 

environment, and weekly fixed effects were not included in the model.  Similarly, the county 

average median basket was negatively associated with using coupons, but positively associated 

with loyalty programs or store savings when the household characteristics, food environment, 

and weekly fixed effects were not included in the model.   

Similarly, in the logistic regression models un with county average low-cost basket, 

SNAP, and the interaction term of these two variables, the results indicate that the county 

average low-cost basket variable was negatively associated with having a grocery list when 

shopping across both the models that separately controlled for the weekly trend, and household 

characteristics, food environment, and weekly fixed effects. The use of loyalty or other store 
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savings was negatively associated with the county average low-cost basket variable only when 

the household characteristics, food environment, and weekly fixed effects variables were 

included in the model. Conversely, the county average low-cost basket variable was positively 

associated with the use of loyalty or store savings, and guideline knowledge. SNAP participation 

was also negatively associated with having a grocery list when shopping, but positively 

associated with the use of loyalty or other store savings, and guideline knowledge. However, the 

interaction term of these two variables was positively associated with having a grocery list when 

shopping, and negatively associated with knowledge of nutrition guidelines. The interaction 

variable of SNAP participation and country average low cost basket was also negatively 

associated with use of loyalty or other savings when household characteristics, food 

environment, and weekly fixed effects were not included in the model. 

The logistic regression models run with Block group level average median basket, SNAP 

participation, and the interaction of these two variables show that Block group average median 

basket price and SNAP participation were negatively associated with having a grocery list when 

shopping, but positively associated with the use of loyalty or other store savings.  The SNAP 

participation variable was also negatively associated with the use of nutrition fact labels when 

shopping when household characteristics, food environment, and weekly fixed effects were not 

included in the model. The interaction term of SNAP participation and Block group median 

average basket was positively associated with having a grocery list when shopping, and 

negatively associated with the use of loyalty discounts or other store savings.  

Correspondingly, the logistic regression models that included Block group level low-cost 

basket, SNAP participation, and the interaction of these two variables show that Block group 

average low-cost basket was negatively associated with having a grocery list when shopping in 
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the model when shopping when household characteristics, food environment, and weekly fixed 

effects were not included in the model. But it was positively associated with the use of loyalty or 

other store savings.  The SNAP participation variable was also positively associated with the use 

of loyalty discounts or other stores savings, and the knowledge of nutrition guideline.  The 

interaction term of SNAP participation and Block group low-cost basket average was negatively 

associated with the use of loyalty discounts or other store savings and knowledge of the 

guideline.  

Food Insecurity: Implications of Food Price and Consumer Competency 

 The logistic regression results examining the association for the county and block level 

food basket prices, and consumer competency related factors on food insecurity after controlling 

for the household level characteristics, food environment, and weekly fixed effects is shown in 

table 5. The results indicate that participants who perceived being in good financial condition 

were less likely to be food insecure. Similarly, paying bills on time, making more than minimum 

payments on revolving debt, and not defaulting on loans were negatively associated with food 

insecurity after controlling for factors related to household characteristics, food environment, and 

the weekly fixed effects.  

Nutrition Quality of Acquired food: Implications of Food Price and Consumer Competency 

 The linear regression results for the association between nutrition quality factors such as 

energy density, fruit density, whole fruit density, and whole grain density are shown in table 6A. 

The independent variables include county average median basket and the consumer competency 

variables. The model also controls for household characteristics, food environment, and the 

weekly fixed effects.  The results indicate that perception of being in good financial condition 

was positively associated with consumption of foods that have high energy density and whole 
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grain density.  County average median basket price was negatively associated with the intake of 

foods with whole grain density. Use of loyalty discounts or other store savings and the use of 

nutrition facts labels were also positively associated with the intake of food with higher whole 

grain density. 

The linear regression results for the nutrition quality variables: vegetable density, sodium 

density, and SoFAAS density are shown in table 6B. The results indicate that respondents who 

did not participate in cash advance or payday loans were positively associated with the 

consumption of food with greater vegetable density. Conversely, the use of loyalty or store 

savings discounts was negatively associated with the consumption of meals high in vegetable 

density. County average median price basket and paying more than minimum on revolving debt, 

and use of nutrition labels when shopping were negatively associated with the amount of sodium 

density consumed in meals. The perception of being in good financial condition and not 

defaulting on debt were negatively associated with the consumption of the percentage of 

SoFAAS consumed in meals.  

Discussion 

Our findings show that high food cost is negatively associated with certain behaviors 

indicating consumer competency in low-income households. Households living in the areas with 

higher local food cost, regardless of the four different methods chosen to define high cost, were 

less likely to engage in review bills regularly, pay bills on time, use grocery list, use coupons, or 

use nutrition facts labels. However, high food cost in the area was strongly correlated with 

households’ increased use of loyalty programs or other store savings. 

While we suspect the disturbing negative associations largely reflect endogeneity or 

reverse causality, we find that these negative associations between food cost and consumer 
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competency were not as pronounced among SNAP participants compared to nonparticipants. For 

example, SNAP participants in high cost areas were more likely than nonparticipants or 

participants in low cost areas to review bills regularly, avoid high-interest financial services such 

as cash advance or payday loans, shop with a grocery list, and follow dietary guidelines when 

faced with higher food cost. It is also noteworthy that, controlling for local food cost, SNAP 

participants were more likely to use loyalty programs or other store savings, and more likely to 

be aware of the dietary guidelines than nonparticipants.  

Controlling for consumer competency, other household characteristics, and food 

environment of the community, we find little evidence that food cost affects the risk of food 

insecurity. Controlling for various household and community characteristics, households that 

engage in better financial management practices were less likely to be food insecure. Again, we 

are not sure how much of it is due to causal effects and how much is due to endogeneity. 

Households’ use of other competent behaviors such as nutrition literacy or thrifty food shopping 

was not significantly associated with the risk of food insecurity. 

Controlling for consumer competency, household characteristics, and food environment 

of the community, local food cost lowers the whole-grain content of the acquired foods, but it 

also significantly lowers sodium density of acquired foods.  

Certain consumer competency items were associated with higher nutritional quality of 

acquired foods. Avoiding cash advance or payday loans was associated with greater vegetable 

density, paying bills more than the required minimum was associated with lower sodium and 

empty calorie densities. Use of loyalty or other store savings was positively associated with 

whole grain density, but negatively associated with buying vegetables. Those who frequently use 

nutrition facts labels acquired foods with greater whole grain contents, and foods with less with 
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sodium or empty calorie.   

Conclusion 

Our findings indicate that the relationship between food price and nutritional outcomes 

can be complex. Although at least theoretically households could benefit from various consumer 

competencies and skills especially when the food cost is high, taking advantage of competent 

consumption strategies may be out of reach for many low-income consumers dealing with high 

food cost. One thrifty shopping strategy we find low-income consumers diligently use in coping 

with high cost of food is participation in loyalty programs or other store savings. Low-income 

households in higher-cost areas, SNAP participants and nonparticipants alike, are more likely to 

adopt loyalty or other store savings programs than those in areas where food cost is relatively 

lower. 

Our findings also suggest different areas of consumer competency have different roles in 

relation to food security and nutritional quality of acquired foods. Financial management was 

found to be associated with low food insecurity but its correlation with nutritional quality is 

weak and mixed. On the other hand, nutrition literacy was significantly associated with positive 

nutritional quality of acquired foods but not with food insecurity. For low-income households, 

purchasing enough food to avoid hunger and acquiring nutritious foods may be competing needs, 

especially when healthful foods cost more than unhealthy ones. We find that, although 

conscientious shopping strategies were actively used among low-income households to stretch 

food dollars to purchase enough food for the family, they did not necessarily translate into 

improved nutritional quality of acquired foods, and sometimes rather decreased nutritional 

quality. This may indicate that those who are more strained for resources may be more likely to 

utilize conscientious shopping strategies than others. Their priorities may be to avoid their family 
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from going hungry, meaning purchasing low-cost, energy-dense food.  

Our current study has several limitations. First, the local food cost is likely to be 

correlated with cost of living in general, which our model did not consider. Second, food away 

from home was not included in our measures of nutritional quality of acquired foods. Third, the 

relationships between food price, consumer competency, and nutrition outcomes we measure are 

based on correlations and cannot be interpreted as cause-and-effect.  

Policy focus on consumer competency programs in SNAP might help achieving program 

goals at the margin but the effect may be modest due to the economic strain challenging many 

consumption categories for low-income households. Our findings suggest policies that 

incentivize competent or conscientious consumption among program participants might decrease 

food insecurity but likely at the expense of lowered nutritional quality, as long as less healthy 

food choices are also less expensive. 
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Table 1 

Summary Statistics: Key Variables 

 All <185% 

(N=1,923) 

SNAP 

(N=1,011) 

Non-SNAP 

(N=912) 

t 

     

Food InsecurityA .360 (.481) .491 (.500) .279 (.449) 7.04*** 

Very Low Food SecurityA .166 (.372) .224 (.417) .131 (.337) 4.27*** 

     

Fruit density .346 (.744) .317 (.769) .364 (.729) -1.00 

Whole fruit density .285 (.728) .256 (.751) .303 (.713) -0.96 

Whole grain density .424 (.932) .357 (.642) .465 (1.070) -1.36 

Vegetable density .574 (1.581) .494 (1.446) .623 (1.657) -1.10 

Energy density 1.414 (.821) 1.336 (.764) 1.461 (.852) -1.87† 

Sodium density 1840 (6945) 1815 (7625) 1856 (6497) -0.12 

SoFAAS percent 37.5 (21.9) 40.4 (21.9) 35.8 (21.8) 3.60*** 

     

Financial Management     

 In good financial conditionA .320 (.466) .186 (.390) .403 (.491) −7.50*** 

 Review bills usuallyA .685 (.464) .641 (.480) .713 (.453) −2.91** 

 Pay bills on time usuallyA .803 (.398) .687 (.464) .874 (.332) −8.45*** 

 Pay more than minimum usuallyA .265 (.441) .127 (.333) .350 (.477) −5.71*** 

 No financial delinquencyA .693 (.461) .543 (.498) .786 (.411) −9.32*** 

 No cash advance or payday loanA .921 (.269) .899 (.302) .936 (.246) −2.19* 

     

Conscientious Consumption     

 Shop with grocery list usuallyA .451 (.498) .387 (.487) .490 (.500) −2.48* 

 Use couponsA .225 (.418) .216 (.412) .230 (.421) −0.58 

 Use loyalty or other store 

savingsA 

.552 (.497) .566 (.496) .543 (.498) 0.71 

     

Nutrition Literacy     

 Guideline knowledgeA .551 (.498) .581 (.494) .532 (.499) 1.06 

 Follow guidelineA .212 (.409) .243 (.429) .192 (.394) 1.37 

 Use nutrition facts labels usuallyA .323 (.468) .301 (.459) .337 (.473) −1.33 

     

Basket Price     

 County average median basket 

price 

281.2 (39.0) 278.4 (36.5) 282.9 (40.4) −1.54 

 County average low-cost basket 

price 

149.0 (20.4) 147.7 (18.7) 149.8 (21.4) −1.17 

 Block group average median 

basket price 

280.3 (44.9) 280.4 (44.5) 280.3 (45.2) 0.06 

 Block group average low-cost 

basket price 

148.4 (21.5) 148.4 (22.2) 148.4 (21.0) 0.02 

Notes: Means and standard deviations adjusted for survey weights. A dichotomous variables. † p<.10, 

* p<.05, ** p<.01, *** p<.001 
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Table 2 

Summary Statistics: Demographic, Program Participation, Dietary Needs, and Environmental 

Variables 

 All <185% 

(N=1,923) 

SNAP 

(N=1,011) 

Non-SNAP 

(N=912) 

Age 51.2 (17.8) 46.3 (15.8) 54.2 (18.3) 

Gender A .443 (.497) .476 (.500) .423 (.494) 

Race: WhiteA .693 (.461) .605 (.489) .748 (.434) 

Race: BlackA .186 (.389) .256 (.437) .143 (.351) 

Race: AsianA              --- (---)              --- (---)              --- (---) 

Race: OtherA .100 (.300) .132 (.338) .081 (.273) 

HispanicA .204 (.403) .232 (.422) .186 (.390) 

Education: Less than HSA .227 (.419) .293 (.455) .186 (.389) 

Education: High schoolA .353 (.478) .358 (.480) .349 (.477) 

Education: Some collegeA .202 (.402) .189 (.391) .211 (.408) 

Education: BachelorsA .083 (.276) .061 (.239) .097 (.296) 

Education: PostgraduateA              --- (---)              --- (---)              --- (---) 

Marital: MarriedA .280 (.449) .208 (.406) .324 (.468) 

Marital: WidowedA .137 (.344) .094 (.292) .164 (.370) 

Marital: Divorced or separatedA .315 (.464) .341 (.474) .298 (.459) 

Marital: Never marriedA .269 (.443) .357 (.479) .214 (.411) 

Child in schoolA .305 (.461) .402 (.490) .246 (.431) 

Household size 2.5 (1.8) 2.8 (1.9) 2.3 (1.8) 

EmployedA .384 (.486) .347 (.476) .406 (.491) 

Income ($/m) 1552.3 (985.9) 1310.0 (975.1) 1701.5 (963.0) 

Home tenure 12.4 (14.5) 9.5 (12.7) 14.2 (15.2) 

Home ownershipA .417 (.493) .271 (.444) .507 (.500) 

Vehicle ownershipA .746 (.435) .649 (.478) .806 (.396) 

    

WICA .082 (.275) .141 (.348) .046 (.210) 

NSLP/NSBPA .248 (.432) .361 (.481) .178 (.382) 

    

Special dietary needsA .531 (.499) .558 (.497) .514 (.500) 

Poor healthA .382 (.486) .498 (.500) .310 (.463) 

#Dinners out per weekA 1.2 (1.3) 1.1 (1.2) 1.2 (1.3) 

    

Urban tractA .682 (.466) .720 (.449) .659 (.474) 

Miles to nearest supermarket from BG 

center 

2.5 (3.5) 2.2 (3.3) 2.6 (3.7) 

Low access tract (1 mile for urban, 20 

miles for rural) A 

.259 (.438) .261 (.440) .257 (.437) 

Food exempt from state sales taxA .929 (.256) .956 (.204) .913 (.282) 

State food tax rate (%) .476 (1.328) .333 (1.085) .564 (1.451) 

Notes: Means and standard deviations adjusted for survey weights. A dichotomous variables. 
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Table 3A 

Logit Regressions of Financial Management Practices: Implications of Food Price (N=1,923) 

 In good financial 

condition 

Review bills Pay bills on time Pay more than 

minimum 

No defaulting No cash advance 

or payday loan 

 (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) 

County average 

median basket price 

-.0011 

(.0032) 

-.0037 

(.0031) 

-.0023 

(.0014) 

-.0003 

(.0015) 

-.0045 

(.0033) 

-.0081* 

(.0038) 

.0042 

(.0027) 

.0028 

(.0023) 

-.0020 

(.0027) 

-.0028 

(.0031) 

-.0033 

(.0030) 

-.0035 

(.0034) 

County average low-

cost basket price 

.0029 

(.0035) 

.0010 

(.0036) 

-.0032 

(.0024) 

-.0013 

(.0025) 

.0012 

(.0047) 

-.0018 

(.0065) 

.0005 

(.0054) 

.0005 

(.0032) 

-.0003 

(.0043) 

-.0007 

(.0054) 

-.0046 

(.0055) 

-.0047 

(.0063) 

Block group average 

median basket price 

-.0001 

(.0017) 

-.0010 

(.0024) 

-.0019 

(.0016) 

-.0005 

(.0015) 

-.0032 

(.0024) 

-.0042† 

(.0024) 

.0057** 

(.0018) 

.0054* 

(.0020) 

.0010 

(.0015) 

.0011 

(.0019) 

-.0009 

(.0024) 

-.0011 

(.0025) 

Block group average 

low-cost basket price 

.0005 

(.0030) 

.0007 

(.0044) 

-.0045 

(.0035) 

-.0022 

(.0036) 

-.0022 

(.0046) 

.0024 

(.0054) 

.0029 

(.0042) 

.0043 

(.0034) 

.0012 

(.0030) 

.0034 

(.0034) 

-.0029 

(.0040) 

-.0014 

(.0044) 

             

Weekly trend Yes No Yes No Yes No Yes No Yes No Yes No 

Household 

characteristics 

No Yes No Yes No Yes No Yes No Yes No Yes 

Food environment No Yes No Yes No Yes No Yes No Yes No Yes 

Weekly fixed effects No Yes No Yes No Yes No Yes No Yes No Yes 

Notes: Weighted Logit regression coefficients and linearized standard errors. Each of the four price measures was estimated in separate 

regressions. † p<.10, * p<.05, ** p<.01, *** p<.001 
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Table 3B 

Logit Regressions of Conscientious Buying and Nutrition Literacy: Implications of Food Price (N=1,923) 

 Shop with grocery 

list 

Use coupons Use loyalty or other 

store savings 

Guideline 

knowledge 

Follow 

guideline 

Use nutrition facts 

labels 

 (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) 

County average 

median basket price 

-.0041* 

(.0017) 

-.0046* 

(.0017) 

-.0015 

(.0025) 

-.0045† 

(.0024) 

.0092*** 

(.0023) 

.0110*** 

(.0019) 

.0013 

(.0020) 

-.0015 

(.0026) 

-.0014 

(.0020) 

-.0018 

(.0023) 

-.0007 

(.0022) 

-.0037† 

(.0021) 

County average low-

cost basket price 

-.0089** 

(.0029) 

-.0117** 

(.0030) 

-.0019 

(.0032) 

-.0062† 

(.0036) 

0172** 

(.0053) 

.0186** 

(.0055) 

.0056 

(.0038) 

.0002 

(.0039) 

-.0014 

(.0034) 

-.0021 

(.0046) 

.0002 

(.0038) 

-.0024 

(.0041) 

Block group average 

median basket price 

-.0038* 

(.0015) 

-.0029† 

(.0014) 

-.0001 

(.0020) 

-.0020 

(.0023) 

.0063*** 

(.0016) 

.0078** 

(.0021) 

.0013 

(.0015) 

-.0018 

(.0013) 

.0007 

(.0017) 

-.0005 

(.0021) 

.0002 

(.0013) 

-.0005 

(.0016) 

Block group average 

low-cost basket price 

-.0084* 

(.0031) 

-.0072** 

(.0023) 

.0025 

(.0035) 

-.0017 

(.0039) 

.0125** 

(.0042) 

.0140** 

(.0042) 

.0043 

(.0037) 

-.0024 

(.0028) 

.0002 

(.0035) 

-.0022 

(.0040) 

.0010 

(.0027) 

.0002 

(.0032) 

             

Weekly trend Yes No Yes No Yes No Yes No Yes No Yes No 

Household 

characteristics 

No Yes No Yes No Yes No Yes No Yes No Yes 

Food environment No Yes No Yes No Yes No Yes No Yes No Yes 

Weekly fixed effects No Yes No Yes No Yes No Yes No Yes No Yes 

Notes: Weighted Logit regression coefficients and linearized standard errors. Each of the four price measures was estimated in separate 

regressions. † p<.10, * p<.05, ** p<.01, *** p<.001 
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Table 4A  

Logit Regressions of Financial Management Practices: Implications of Food Price and SNAP 

Notes: Weighted Logit regression coefficients and linearized standard errors. Each of the four price measures was estimated in separate regressions. † p<.10, * 

p<.05, ** p<.01, *** p<.001  

 In good financial 

condition 

Review bills Pay bills on time Pay more than 

minimum 

No defaulting No cash advance 

or payday loan 

 (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) 

County average 

median basket  

-.002 

(.003) 

-.004 

(.003) 

-.005** 

(.002) 

-.004† 

(.002) 

-.007 

(.005) 

-.008 

(.005) 

.003 

(.003) 

.002 

(.003) 

-.003 

(.003) 

-.003 

(.004) 

-.008 

(.005) 

-.007 

(.005) 

SNAP*County 

median basket  

.003 

(.003) 

.003 

(.003) 

.006 

(.004) 

.005 

(.004) 

.004 

(.004) 

.001 

(.004) 

.006 

(.005) 

.005 

(.004) 

.000 

(.003) 

.001 

(.004) 

.010 

(.007) 

.009 

(.007) 

SNAP 
-1.839† 

(.977) 

-1.572 

(.965) 

-1.907† 

(1.064) 

-1.322 

(1.055) 

-2.247* 

(1.052) 

-1.137 

(1.016) 

-3.261* 

(1.392) 

-2.286† 

(1.179) 

-1.236 

(.862) 

-.944 

(1.093) 

-3.283† 

(1.871) 

-2.659 

(1.878) 
             

County average 

low-cost basket  

.003 

(.005) 

.003 

(.005) 

-.005 

(.004) 

-.003 

(.004) 

-.002 

(.006) 

-.001 

(.008) 

-.003 

(.006) 

-.001 

(.004) 

-.002 

(.006) 

-.001 

(.007) 

-.005 

(.009) 

-.003 

(.010) 

SNAP*County low 

cost basket 

-.007 

(.006) 

-.007 

(.008) 

.004 

(.005) 

.003 

(.006) 

.003 

(.006) 

-.001 

(.005) 

.008 

(.010) 

.006 

(.010) 

.002 

(.006) 

.001 

(.005) 

-.001 

(.010) 

-.001 

(.011) 

SNAP 
-.155 

(.934) 

.383 

(1.075) 

-.923 

(.740) 

-.337 

(.913) 

-1.661† 

(.856) 

-.679 

(.780) 

-2.627† 

(1.505) 

-1.849 

(1.469) 

-1.420 

(.906) 

-.887 

(.827) 

-.463 

(1.523) 

-.014 

(1.665) 
             

Block group 

average median 

basket  

-.003* 

(.002) 

-.003 

(.002) 

-.005** 

(.002) 

-.003 

(.002) 

-.006† 

(.003) 

-.005 

(.003) 

.002 

(.002) 

.003 

(.002) 

-.003 

(.002) 

-.002 

(.002) 

-.009* 

(.004) 

-.006 

(.004) 

SNAP*Block group 

median  

.002 

(.003) 

.002 

(.003) 

.006* 

(.003) 

.005† 

(.003) 

.001 

(.003) 

-.001 

(.003) 

-.000 

(.004) 

-.001 

(.004) 

.002 

(.003) 

.004 

(.004) 

.011* 

(.005) 

.011† 

(.006) 

SNAP 
-1.611* 

(.748) 

-1.251 

(.823) 

-1.966* 

(.750) 

-1.353† 

(.709) 

-1.597† 

(.865) 

-.535 

(.818) 

-1.339 

(1.205) 

-.850 

(1.134) 

-1.825* 

(.851) 

-1.715 

(1.092) 

-3.577* 

(1.398) 

-3.319† 

(1.648) 
             

Block group 

average low-cost 

basket  

-.004 

(.005) 

-.002 

(.006) 

-.006 

(.004) 

.001 

(.004) 

-.006 

(.006) 

-.000 

(.006) 

-.002 

(.006) 

.001 

(.005) 

-.005 

(.004) 

-.001 

(.005) 

-.009 

(.008) 

-.004 

(.009) 

SNAP*block group 

low cost basket  

-.004 

(.008) 

-.003 

(.008) 

.005 

(.005) 

.004 

(.006) 

.000 

(.005) 

-.005 

(.006) 

-.002 

(.011) 

-.000 

(.010) 

.004 

(.006) 

.005 

(.006) 

.002 

(.010) 

.001 

(.012) 

SNAP 

-.575 

(1.176) 

-.325 

(1.099) 

-1.101 

(.803) 

-.467 

(.946) 

-1.232 

(.837) 

-.076 

(.896) 

-1.093 

(1.763) 

-1.001 

(1.559) 

-1.709* 

(.834) 

-1.351 

(1.109) 

-.902 

(1.491) 

-.431 

(1.766) 
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Table 4B  

Logit Regressions of Conscientious Buying and Nutrition Literacy: Implications of Food Price and SNAP 

Notes: Weighted Logit regression coefficients and linearized standard errors. Each of the four price measures was estimated in separate regressions. † p<.10, * p<.05, ** p<.01, 

*** p<.001 

 Shop with grocery 

list 

Use coupons Use loyalty or 

other store savings 

Guideline 

knowledge 

Follow guideline Use nutrition facts 

labels 

 (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) 

County average 

median basket  

-.009** 

(.003) 

-.010*** 

(.002) 

-.004 

(.003) 

-.007* 

(.003) 

.011*** 

(.003) 

.012 

(.002) 

.002 

(.003) 

-.000 

(.003) 

-.004 

(.004) 

-.004 

(.003) 

-.001 

(.003) 

-.004 

(.003) 

SNAP*County 

median basket  

.012** 

(.004) 

.013** 

(.004) 

.005 

(.005) 

.006 

(.005) 

-.004 

(.004) 

-.004 

(.003) 

.001 

(.005) 

-.001 

(.005) 

.008† 

(.005) 

.006 

(.005) 

.001 

(.004) 

-.000 

(.004) 

SNAP 
-3.668** 

(1.114) 

-3.753** 

(1.205) 

-1.430 

(1.608) 

-1.639 

(1.634) 

1.351 

(1.083) 

1.647 

(.985) 

-.100 

(1.378) 

.480 

(1.283) 

-2.042 

(1.261) 

-1.503 

(1.366) 

-.372 

(1.050) 

-.050 

(1.228) 
             

County average 

low-cost basket  

-.015*** 

(.004) 

-.018*** 

(.004) 

-.005 

(.005) 

-.010† 

(.005) 

.021*** 

(.005) 

.022*** 

(.006) 

.012* 

(.005) 

.008* 

(.004) 

-.003 

(.006) 

-.003 

(.007) 

-.002 

(.005) 

-.003 

(.005) 

SNAP*County low 

cost basket 

.016** 

(.005) 

.019** 

(.006) 

.009 

(.008) 

.009 

(.009) 

-.010* 

(.005) 

-.009 

(.006) 

-.015** 

(.005) 

-.018** 

(.005) 

.009 

(.010) 

.007 

(.012) 

.001 

(.007) 

-.001 

(.008) 

SNAP 
-2.826** 

(.823) 

-2.986** 

(.923) 

-1.409 

(1.363) 

-1.277 

(1.462) 

1.562* 

(.682) 

1.772† 

(.890) 

2.469** 

(.745) 

2.916*** 

(.735) 

-1.120 

(1.537) 

-.722 

(1.774) 

-.406 

(1.072) 

.091 

(1.203) 
             

Block group 

average median 

basket  

-.006* 

(.002) 

-.005* 

(.002) 

-.001 

(.002) 

-.003 

(.003) 

.007** 

(.002) 

.009*** 

(.002) 

.003 

(.003) 

.001 

(.002) 

-.002 

(.002) 

-.003 

(.003) 

-.002 

(.002) 

-.002 

(.002) 

SNAP*Block group 

median  

.006† 

(.003) 

.006† 

(.003) 

.000 

(.004) 

.002 

(.004) 

-.005† 

(.003) 

-.006* 

(.003) 

-.002 

(.003) 

-.004 

(.003) 

.006† 

(.003) 

.006 

(.004) 

.005 

(.003) 

.004 

(.003) 

SNAP 
-2.054* 

(.953) 

-1.902* 

(.917) 

-.221 

(1.216) 

-.549 

(1.265) 

1.475* 

(.724) 

2.084** 

(.755) 

.722 

(.994) 

1.352 

(.910) 

-1.462 

(.949) 

-1.394 

(1.217) 

-1.500† 

(.874) 

-1.273 

(.921) 
             

Block group 

average low-cost 

basket  

-.008† 

(.004) 

-.005 

(.003) 

.001 

(.004) 

-.004 

(.005) 

.016*** 

(.005) 

.020*** 

(.004) 

.010 

(.006) 

.004 

(.005) 

-.003 

(.006) 

-.004 

(.007) 

-.006 

(.005) 

-.006 

(.004) 

SNAP*block group 

low cost basket  

.002 

(.005) 

.003 

(.005) 

-.001 

(.007) 

.004 

(.008) 

-.012* 

(.005) 

-.013* 

(.006) 

-.015† 

(.008) 

-.018* 

(.008) 

.007 

(.010) 

.008 

(.011) 

.009 

(.008) 

.008 

(.009) 

SNAP 

-.645 

(.808) 

-.661 

(.762) 

.072 

(1.181) 

-.518 

(1.235) 

1.812* 

(.790) 

2.259** 

(.828) 

2.352* 

(1.130) 

2.798* 

(1.138) 

-.743 

(1.554) 

-.942 

(1.688) 

-1.477 

(1.211) 

-1.307 

(1.260) 
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Table 5 

Logit regressions of food insecurity: Implications of food price and consumer competency 

 Food insecurity Food insecurity Food insecurity Food insecurity 

County average median basket -.001 (.003)    

County average low-cost basket  .001 (.004)   

Block group average median basket   -.001 (.002)  

Block group average low-cost basket    .000 (.004) 

In good financial condition -1.844 (.286)*** -1.841 (.290)*** -1.850 (.284)*** -1.840 (.289)*** 

Review bills .143 (.161) .148 (.163) .147 (.162) .147 (.164) 

Pay bills on time -.686 (.201)* -.673 (.205)** -.686 (.203)** -.672 (.204)** 

Pay more than minimum -.684 (.256)* -.697 (.252)** -.682 (.253)* -.697 (.252)** 

No defaulting -1.001 (.201)*** -1.003 (.199)*** -.997 (.202)*** -1.003 (.201)*** 

No cash advance or payday loan -.202 (.264)  -.195 (.262) -.198 (.262) -.196 (.262) 

Shop with grocery list -.064 (.192) .068 (.190) .063 (.190) .067 (.190) 

Use coupons .055 (.195) .074 (.191) .059 (.191) .072 (.191) 

Use loyalty or other store savings -.115 (.186) -.142 (.181) -.120 (.178) -.139 (.179) 

Guideline knowledge -.309 (.188) -.311 (.187) -.309 (.189) -.310 (.188) 

Follow guideline -.029 (.207) -.036 (.210) -.029 (.208) -.35 (.210) 

Use nutrition facts labels -.120 (.219) -.116 (.220) -.115 (.219) -.116 (.220) 

     

Household characteristics Yes Yes Yes Yes 

Food environment Yes Yes Yes Yes 

Weekly fixed effect Yes Yes Yes Yes 

     

Notes: Weighted Logit regression coefficients and linearized standard errors. * p<.05, ** p<.01, *** p<.001 
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Table 6A 

Linear regressions of nutritional quality of acquired food: Implications of food price and consumer 

competency 

 Fruit 

density 

Whole fruit 

density 

Whole grain 

density 

Vegetable 

density 

County average median 

basket 

.001 (.001) .000 (.001) -.002 (.001)† -.001 (.001) 

     

In good financial condition -.038 (.066) -.056 (.066) .146 (.075)† -.213 (.140) 

Review bills -.048 (.065) -.050 (.068) .020 (.054) -.028 (.097) 

Pay bills on time -.006 (.060) -.006 (.058) -.095 (.066) -.026 (.137) 

Pay more than minimum -.000 (.046) -.011 (.044) -.089 (.093) .080 (.123) 

No defaulting -.017 (.072) .016 (.068) -.063 (.072) .104 (.115) 

No cash advance or payday 

loan 

.027 (.074) .026 (.067) -.134 (.0864) .223 (.109)* 

Shop with grocery list .015 (.043) -.007 (.044) -.119 (.078) .062 (.076) 

Use coupons -.068 (.059) -.069 (.055) -.090 (.084) .117 (.133) 

Use loyalty or other store 

savings 

-.084 (.060) -.091 (.059) .169 (.076)* -.291 (.143)* 

Guideline knowledge .074 (.050) .065 (.052) -.014 (.066) .127 (.088) 

Follow guideline .077 (.091) .070 (.090) .006 (.078) .003 (.093) 

Use nutrition facts labels .052 (.057) .052 (.059) .183 (.085)* -.011 (.138) 

     

Household characteristics Yes Yes Yes Yes 

Food environment Yes Yes Yes Yes 

Weekly fixed effect Yes Yes Yes Yes 

     

Notes: Weighted Logit regression coefficients and linearized standard errors. † p<.10, * p<.05, ** 

p<.01 
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Table 6B 

Linear regressions of nutritional quality of acquired food: Implications of food price and consumer 

competency 

 Energy density Sodium density SoFAAS percent 

County average median basket -.000 (.001) -5.0 (2.1)* .019 (.019) 

    

In good financial condition .228 (.069)** -567.8 (418.9) -3.654 (1.610)* 

Review bills -.036 (.061) -232.6 (378.9) 2.079 (1.514) 

Pay bills on time -.081 (.058) 329.7 (210.2) .542 (1.648) 

Pay more than minimum -.044 (.064) -485.8 (221.7)* -3.823 (1.808)* 

No defaulting -.089 (.075) 589.4 (397.4) 1.618 (1.989) 

No cash advance or payday loan .141 (.094) -392.9 (455.4) -.767 (2.247) 

Shop with grocery list .040 (.061) -455.8 (303.5) 1.706 (1.710) 

Use coupons -.011 (.070) -489.0 (355.3) 2.581 (1.456)† 

Use loyalty or other store savings .051 (.045) 271.2 (376.0) .245 (1.482) 

Guideline knowledge -.002 (.047) -240.7 (379.7) -1.234 (1.692) 

Follow guideline -.044 (.061) 738.1 (674.7) .576 (1.751) 

Use nutrition facts labels -.059 (.055) -664.5 (366.2)† -2.570 (1.509)† 

    

Household characteristics Yes Yes Yes 

Food environment Yes Yes Yes 

Weekly fixed effect Yes Yes Yes 

    

Notes: Weighted Logit regression coefficients and linearized 

standard errors. † p<.10, * p<.05 
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Abstract 

This paper examines the relationship between SNAP participation and prices paid for 

food items. To test this relationship, we develop an expensiveness index following the method of 

Aguiar and Hurst (2007) and use the FoodAPS data set. Using both the ordinary least squares 

method and controlling for endogeneity using an instrumental variables approach, we found 

SNAP participation did not hold a statistically significant relationship with the prices paid for 

food items when we controlled for consumer behavior and food market variables. This suggests 

that SNAP participants are not systematically disadvantaged in their food purchases.  Additional 

efforts to further educate SNAP participants of effective shopping and budgeting habits may be 

fruitful in helping households pay comparatively lower food prices. 
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Executive summary 

The main focus of the research was to estimate the effect of SNAP participation on the 

prices paid for food products. The key consideration is whether SNAP participants were 

disadvantaged systematically in the cost of food purchases in the US food system.  Efficiency in 

the provision of SNAP benefits to recipients is the considerations here as even a small difference 

would be important in enhancing food security for the US population.  The recent USDA 

innovation in developing the FoodAPS data set provides a unique opportunity to evaluate this 

question directly as this data set more fully identifies often under-reported SNAP participation.  

This research uses statistical analysis that showed that SNAP participants are not 

disadvantaged in their food purchases in the US food system.  This statistical analysis controlled 

for the significant effects of market structure (e.g. number of competitors in the market), individual 

characteristics (e.g. education, age, number of children) and food shopping behavior (e.g. use of 

budgeting).  Furthermore, the endogeneity of SNAP participation was controlled for using modern 

econometric techniques. 

An interesting issue that was explored in the analysis was the role of food shopping 

behavior, and it was found that using budgeting resulted in paying less for food purchases.  This is 

a traditional area where SNAP-Ed has focused efforts.  The results show that budgeting enables 

less expensive food purchases and suggests that SNAP-Ed efforts in this area should be continued 

and perhaps expanded. 

Our variables controlling for the local market for food items indicates both concentration of 

non-supermarket stores and closer proximity to SNAP authorized retailers were associated with 

comparatively lower prices paid for food items. Although smaller (non-supermarket) stores are 

typically associated comparatively higher prices than larger (supermarket) stores, it is possible 

higher competition for consumer patronage drives down prices. Both these findings demonstrate if 
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the consumer is knowledgeable of potential bargains or saving opportunities in their local food 

market, they will be better able to attain comparatively lower food costs.  This could also be further 

emphasized in SNAP-Ed efforts. 

It is recommended for the future development of the FoodAPS data set that several critical 

areas are focused on.  First, because many SNAP participants are disabled with associated special 

needs, a direct measure of disability in the data set would better help us understand their food 

behavior along with specific efforts to facilitate their food security.  Second, while the data set does 

report on use of private food charities, this use is not full identified and is almost certainly 

underreported.  Given the importance of private food charities and their interactions with SNAP 

benefits, more fully identifying food charity provision would be particularly useful in enhancing 

the joint effectiveness of private food charities and SNAP in food security.  Third, direct questions 

about SNAP-Ed educational efforts can be put in the data set to determine the effectiveness of 

these education efforts in enhancing food security including addressing obesity reduction and other 

desired policy and health outcomes.   

As the ability to effectively use SNAP to lower food costs is jointly related to the 

participating households’ local food market and their specific consumer behaviors, it may be 

fruitful for researchers and policy makers to further examine these relationships specifically. It may 

be particularly fruitful to provide households participating in SNAP with additional information or 

educational materials on effective budgeting, financial planning, and shopping strategies for their 

local market environment. This would provide households with both the means and knowledge to 

pay comparatively lower food prices. The continued development and availability of FoodAPS data 

should be important in achieving these outcomes.  
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Introduction 

One of the key challenges when purchasing food is the ability to consider relative prices in 

a particular food environment. Within a food environment, a consumer can act to make “smart 

decisions” and purchase relatively less expensive items with the goal of obtaining desired food 

outcomes in a thrifty manner. Lower income households arguably have the strongest incentives to 

purchase food in the thriftiest way possible because the tradeoffs of not optimizing on price and 

nutritional value are comparatively higher than the tradeoffs faced by higher income households 

(Ghez and Becker 1975).  

The Supplemental Nutrition Assistance Program (SNAP) is the US government’s main 

effort towards improving food security of low income individuals in the United States. In 2015, the 

US government spent approximately $74 billion on SNAP with nearly 46 million participants 

(USDA 2016)a. An important question for the efficiency of this program is whether participants 

pay prices that are consistent with non-recipients. Small improvements in the efficiency of 

participant usage could have large effects upon the impact of the program. In fact, educational 

efforts have also been provided to SNAP participants to improve their food purchasing decisions 

(USDA 2016)b.   

The main focus of this study is the analysis of factors affecting food prices paid by low 

income households. Of special interest, is the question of whether low income households which 

participate in SNAP obtain lower food prices relative to nonparticipants. To answer our research 

questions, we make use of the FoodAPS data set. The FoodAPS dataset is the first nationally 

representative survey of US household’s food purchases including SNAP participants and non-

participants. FoodAPS data contains information on prices paid for food items by 4046 families in 

conjunction with detailed information pertaining to household socio-demographic characteristics as 
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well as information about the local food environment and competitive food market structure. Thus, 

the FoodAPS database provides a unique opportunity to consider the ability of low income 

households to achieve improved purchasing decisions, while controlling for the number and quality 

of food providers in their food market as well as individual capability. The proposed analysis is not 

achievable with existing data sets such as the National Health and Nutrition Survey (NHANES) or 

the Behavioral Risk Factor Surveillance System (BRFSS). Specifically, the NHANES and BRFSS 

do not contain information regarding local food market factors or variables measuring behaviors of 

consumers when making purchase decisions for food items.  

Our analysis generates valuable information for policy makers and those involved in 

SNAP-Ed efforts because it specifically examines the prices SNAP participants paid when 

purchasing food items and provides a more thorough analysis than previously conducted by 

incorporating household sociodemographic and shopping behaviors, and market characteristics. By 

using the FoodAPS dataset, we are better able to determine the effectiveness of the SNAP program 

to provide lower income households with the ability and knowledge to obtain nutritional food at 

comparatively lower costs. We also provide a more robust analysis of the impact of food retailer 

market structure and socio-economic factors on food prices a household faces.  

Literature review 

Food prices faced by households are the result of economic, demographic, and geographic 

factors.  Household characteristics including size, race, income, and educational level may 

contribute to the prices paid by for food items by affecting the quantity or type of food purchased. 

Similarly, the specific shopping behaviors and habits of the food purchasers in a household in 

conjunction with the food market they make purchases in can impact the ability to achieve lower 

food prices.   

Although a few studies have evaluated the effect of store type and socio-demographic 



Food APS Research at UKCPR – Page 223 

 

characteristics on food prices in the United States, they have been limited to specific geographic 

areas (Aguiar and Hurst 2007; Musgrove and Galindo 1988; Rao 2000), specific food products 

(Bekesi, Loy, and Weiss 2013), or have used a limited set of explanatory variables (Stewart and 

Dong 2011). In this section, we summarize the main findings from this literature.  

Several studies have explored the relationship between household income and food prices. 

A common finding among of these studies is the inverse relationship between income and prices 

paid. Several explanations have been provided to explain this result. At the aggregate level, higher 

food prices for higher income consumers may be the result of food quality (Aguiar and Hurst 

2007). For example, Kyureghian, Nayga, and Bhattacharya (2013) found that income had a 

significantly positive relationship with the purchase of fruits and vegetables and that these items 

are a relatively more expensive purchase then many sugary and starchy products. Lower income 

consumers purchase food items with higher energy density and higher fat content (Drewnowski and 

Specter 2004; Morland et al 2001). 

 Lower income households may also face higher food costs because they are unable to 

afford larger quantities of food which can be purchased at lower per unit costs. This is referred to in 

the literature as the "size effect" (Mendoza 2011). In a case study of 3 villages in India, Rao (2000) 

found families from lower income villages frequently paid higher unit costs for food items because 

lower income families did not take advantage of bulk discount opportunities. Kunreuther (1973) 

found similar evidence from households in the United States where households did not purchase 

bundles of food products at the lowest per unit costs because some households faced lower storage 

capacity and tighter budgets. 

It is important to distinguish the knowledge of how to take advantage of bulk discounts 

from the inability to take advantage of bulk discounts due to income constraints. Beatty (2010) 

found that lower income households in the United Kingdom were able to pay comparatively lower 
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costs on average by spending a larger share of income on food items with quantity discounts. 

Varying consumer knowledge of lower prices in conjunction with effective educational policy 

could explain these findings.  

Alternatively, in some situations, higher income households may pay higher prices for food 

items because higher incomes imply higher tradeoffs for time spent searching for lower prices 

(Becker 1965). For example, Cronovich, Daneshvary, and Schwer (1997) found that households 

earning over $75,000 were less likely to use coupons. They also found that households that thought 

that their income was inadequate were more likely to use coupons (p. 1639)1.   

 The composition of a household has also been shown to affect buying patterns which affect 

food prices paid. Bekesi, Loy, and Weiss (2013) found that households with children are less likely 

to form specific buying habits than single adult households with no children due to the frequently 

changing tastes of children.  Cronovich, Daneshvary, and Schwer (1997) found that families with a 

child between 1 and 5 years old were less likely to utilize coupons when purchasing food; however, 

the authors found that as the number of adults per household increased, households were more 

likely to use coupons. As food purchases become a larger portion of household expenses, it 

becomes more important for households to minimize costs. The literature has also found households 

with older adults were more likely to base their purchasing decision on past choices (Bekesi, Loy 

and Weiss 2013), more likely to use coupons (Cronovich, Daneshvary, and Schwer 1997), and 

were willing to go shopping more frequently to obtain lower prices (Anguiar and Hurst 2007). 

Households with older adults have also been associated with stronger preferences for nutritious 

foods than single person households and comparatively younger households (Blanciforti, Green, 

and Lane 1981). Race has also been associated with variation in food prices paid by households. 

                                                            
1 Adequacy was determined by a households who were asked, “How adequate do you consider your income?” 

(Cronovich,  Daneshvary, and Schwer 1997, p. 1663). Responses were recorded as values between 1 (very adequate) to 

5 (inadequate). 
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Black and Hispanic households are significantly less likely to use coupons than other racial groups 

(Cronovich, Daneshvary, and Schwer 1997).  

 Geographical proximity to food providers, in many cases related to the racial makeup of 

neighborhoods, has also been shown to affect the food prices households pay. Cummings and 

Mcintyre (2005) found that predominantly African-American neighborhoods are more likely to be 

located further to food access than neighborhoods of other racial composition. Zenk et al. (2005) 

also found that supermarkets were an average of 1.15 miles farther away from predominantly black 

neighborhoods than predominantly white neighborhoods. According to Kunreuther (1973), “They 

[referring to lower income families] are thus more likely to patronize the neighborhood store than 

to travel some distance to chain store” (p. 373-374). This limited travel choice could result in 

higher food costs. Hoch et al. (1995) found, “isolated stores display less price sensitivity than 

stores close to their competitors” (p.28). This lack of access to chain stores may lead to more 

income allocation to food (Chung and Myers 1999; Moreland et al. 2001). 

  In addition to distance from chain stores, households which do not own a means of 

transportation may also have limited ability to access stores with comparatively lower food prices. 

Andrews, Bhatta, and Ver Ploeg (2012) found that citizens of New Orleans who did not own their 

own mode of transportation paid additional travel costs of approximately $11 more per month than 

those with their own vehicle2. For low income families, these costs can be significant barriers to 

obtaining food items at lower prices. 

 Education level may also have an effect on purchasing decisions. In theory, individuals with 

more education may be more likely to understand and implement cost saving strategies, such as 

using coupons, to pay lower prices for food (Narashman 1984). In contrast to this theory, 

Cronovich, Daneshvary, and Schwer (1997) did not find a statistically significant relationship 

                                                            
2The cost was approximately 12 times more if the shopper used a taxi service. 
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between coupon usage and college education. However, the authors did find a statistically 

significant relationship between, households with at least one full time college student and coupon 

usage. This is likely explained by the differences in incomes between college graduates and college 

students.  

 Employment status may also affect the purchasing decisions a household makes. Previous 

research has shown that adults who work full time and part time are less likely to pursue efforts 

which could food costs (Cronovich, Daneshvary, and Schwer 1997). Sheethan, Ainslie, and 

Chintagunta (1999) found no statistically significant relationship between previous buying patterns 

and purchases made by retired, unemployed, and single mother households. This is likely 

indicative of high price sensitivity due to income constrains. 

 Each of the factors or conditions examined in the previous literature can play important 

roles in household food purchase decisions and can impact prices paid. Our analysis builds on this 

literature incorporating all of the previously examined variables into a single analysis. We also use 

the FoodAPS dataset which has not been used to assess the impact of SNAP on price paid for food 

items3. Additionally, our analysis specifically examines the food prices paid by SNAP participants 

relative to nonparticipants. This has not been examined in the previous literature.  

Data 

 The FoodAPS dataset contains information from a nationally representative survey of United 

States household food purchases collected from April 2012 to January 2013.  FoodAPS is composed 

of individual, household, events, items, places, and geodata datasets. These subsets of the FoodAPS 

dataset contain data on individual characteristics, household characteristics, food acquisition (both 

away and at home), food items purchased, location where the food item was purchased, and 

                                                            
3 Taylor and Villas-Boas (2016) used the FoodAPS dataset to examine the effects of SNAP participation on store 

selection but do not extend their analysis to include prices.  
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geographical and local food market information relevant to the location of the household, 

respectively. The FoodAPS database contains 55,307 observations of 4,826 families selecting from 

208 different food items in total. A complete list of the food items used in the FoodAPS dataset is 

provided in Table 1.  

 The FoodAPS dataset was collected using a multi-stage sampling design. The first stage 

selected a stratified sample of 50 primary sampling units (these units are based on metropolitan 

statistical areas defined by the US office of Management and Budget) with each unit being a 

composite reflecting overall sample targets and estimated population of each primary sampling 

unit. The second stages consisted of data collection all food purchases made by members of each 

household.   

 Each household was asked to report all food purchases over a 7-day period.  Households were 

also instructed to distinguish between food items purchased for the purpose of being consumed in 

the home and food items purchased to be consumed outside the home. The primary food shopper 

was identified as the primary respondent for each household. The primary food shopper was 

responsible for recording all food item purchases made, the weight of each item purchased, where 

the purchases were made, and if the household made use of SNAP benefits when making these 

purchases. Adults and youths were also given food books and asked to record all purchases made 

following the same guidelines as the primary food buyer. Adults were defined as those 19 years old 

and older. Youths were defined as those 18 and under. Food purchases were recorded in food 

books which were collected after the sampling period. 

Interviews were conducted before and after food purchases during the data collection 

period. The first interview was conducted to determine household eligibility for the FoodAPS 
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survey and to categorize the household into SNAP or non-SNAP recipient categories4. The 

information collected during the second interview included the primary food buyer’s socio 

demographic characteristics including age, sex, race5, marital status and highest level of schooling 

completed. Information regarding household characteristics (size, income, etc.) was also collected 

during the second interview. 

Households which reported receiving SNAP benefits were then matched by ERS staff the 

administrative records to verify both accuracy of their participation and the last date the household 

received SNAP benefits. Administrative confirmation the household received SNAP benefits were 

based on records obtained from the caseload and Anti-fraud Locator using EBT Retailer 

Transactions (ALERT) data. SNAP participants were also asked when they last received SNAP 

benefits and what amount they received.  

 Food access and food market information was compiled in the FoodAPS Retail 

Environment Study Data. The food access data is composed of 3 levels of food geographic 

aggregation: county-level, tract-level, and main block group-level. County-level aggregation 

includes information on the total population-normalized count of food retailers. Tract-level 

aggregation includes information of food retailers in and around each primary sampling unit. Main 

block group-level aggregation is the lowest level of aggregation and includes information on the 

availability of food retailers in and around block groups of each primary sample unit. Group blocks 

are distinguished by population count and socioeconomic indicators within a population sample 

unit.  

 Information regarding food retailers are also broken into four categories: supermarket, non-

supermarket, farmers market, and farmers markets accepting SNAP. Supermarkets are categorized 

                                                            
4 Verification requirements included the household was within the scope of the dataset, data was obtained from the 

household’s primary residence (as opposed to a vacation home). 
5Racial composition includes the categories: White, Black or African American, Hispanic or Spanish or Latino, 

American Indian or Alaskan Native, Asian, Hawaiian or Pacific Islander, and other. 
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as food retailers with annual sales greater than $2 million. The non-supermarket category includes 

smaller grocery stores with annual sales less than $2 million. The non-supermarket category also 

includes convenience stores, pharmacies, gas stations, dollars stores, and specialties stores such as 

bakeries.  Farmers markets are categorized as "two or more farm vendors selling at a common 

direct retail outlet and the same physical location on a recurring basis" (Wilde and Llobrera, 2014; 

p. 8).   

 Data on the local food environment for the market component of our empirical analysis is 

found in the geography component of the FoodAPS database. In the geography component retailers 

which are SNAP-authorized and not SNAP-authorized are categorized as either super store, 

supermarket, a combination of grocery/other store, convenience store, medium and large grocery 

store, or Wal-Mart. Each category of SNAP-approved retailer is further categorized on the number 

of each type of food retailer within 0.25, 0.5, 1, 2, 5, 10, 15, or 30 miles from the household.  

Summary statistics for the data set used is provided in Table 2. 

Methods 

Given that households buy a variety of different goods during each shopping trip, the first 

step of the analysis involved the calculation of a price index—also called expensiveness index 

(Beatty, 2010; Aguiar and Hurst, 2007)6. The second step of the analysis involved regressing the 

expensiveness index on a set of explanatory variables.  

The Expensiveness Index  

This index compares the cost of a household’s food basket at average prices paid by all 

households in the sample to the cost actually paid by the household. The price index construction 

follows the method used by Aguiar and Hurst (2007). First, we calculated total expenditures for 

                                                            
6  We use the household as our unit of measurement for the food basket instead of family size because the primary food 

purchaser reports the items purchased for all household members including residents which are not related to the 

primary food purchaser. 
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household j in period m are (𝑋𝑚
𝑗

) 

(1) 𝑋𝑚
𝑗

= ∑ 𝑝𝑖,𝑡
𝑗

𝑞𝑖,𝑡
𝑗

𝑖∈𝐼,𝑡∈𝑚 , =∑ 𝑋𝑖,𝑡
𝑗

𝑖∈𝐼,𝑡∈𝑚 , 

where 𝑝𝑖,𝑡
𝑗

denotes the price per ounce paid, 𝑞𝑖,𝑡
𝑗

 denotes the quantity of ounces purchased, 

𝑋𝑖,𝑡
𝑗

denotes expenditures on good i and shopping trip (date) t. Another element needed for the 

calculation of the price index is the average price paid for product i by all households in period m 

(�̅�i,m):  

(2) �̅�i,m = ∑ (
𝑋𝑖,𝑡

𝑗

�̅�𝑖,𝑚
𝑗𝜖𝐽,𝑡𝜖𝑚 ), 

where �̅�𝑖,𝑚 = ∑ 𝑞𝑖,𝑡
𝑗

𝑗𝜖𝐽,𝑡𝜖𝑚  is the total quantity of food item i purchased by all households during 

period m. Thus, the cost of household j food basket at average prices is: 

(3) �̃�𝑗 = ∑ �̅�i,m𝑞𝑖,𝑡
𝑗

𝑖𝜖𝐼 .  

Finally, the price (expensiveness) index, where I represents the set of all goods, for 

household j is (𝐼𝑗): 

(4) 𝐼𝑗 =
𝑋𝑗

�̃�𝑗
.  

We normalized the price index around one by dividing by dividing the average 

expensiveness index for each household by the average price index. An expensiveness index above 

1 indicates that a household spent more than average in acquiring their food basket and a value 

below 1 indicates the household spent less than average on their food basket. Equations (1) and (2) 

consider the entire period of observation (8 months) as only one period (m=1).  
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Regression Analysis  

The model we use is: 

𝐼𝑗 = α +  𝛽𝑆𝑁𝐴𝑃SNAP𝑗 + 𝛽
𝑋𝐻
′  𝑋𝑗

𝐻  +  𝛽
𝑋𝐶
′ 𝑋𝑗

𝐶  +  𝛽
𝑋𝑀
′ 𝑋𝑗

𝑀  +  ej, where 𝐼𝑗represents our 

expensiveness index developed above. The expensiveness index is regressed against the XH, XC, 

and XM vectors which consist of our household, shopping behavior and habits, and food market 

variables, respectively and ej is a random error (see Table 3).  

SNAP, our primary interest, is a binary variable which indicates if the household received 

SNAP benefits. We only include households which have been confirmed by administrative match 

to be receiving SNAP benefits instead of measuring receiving SNAP benefits by households which 

indicated they have received SNAP benefits7. We use this approach to avoid misreporting 

participation which could bias our results (Almada, McCarthy, and Tchernis 2015).  

Our vector controlling for household related variables includes the logarithm of the yearly 

household income8 and the logarithm of the household size. To determine the effects of the 

household composition on prices paid for food items we also include variables of the percentage of 

household members over 60 years, between the ages of 5 and 17, and less than 5 years old9. We 

also use binary variables indicating the household is composed of a Single Person and if the 

primary food purchaser is male. Our Age variable represents the age of the primary food purchaser. 

To account for education level, we use 5 binary variables which hold a value of 1 if the 

primary food purchaser has earned their GED or equivalence, received some college education but has 

not received a college degree received an associate’s degree, received a bachelor’s degree or has 

                                                            
7The difference between the reported and confirmed amount was 145 household or approximately 10% of all 

households who responded they were receiving SNAP benefits. 
8 We calculate this by taking the logarithm of the reported monthly income of the household multiplied by 12 because 

yearly income was not recorded during the interview process.  
9 We use the same age distinctions as Beatty (2010).   
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received a Master’s degree or above. We also use binary variables to represent if the primary food 

purchaser is Black, Asian or Hispanic and if the household owns their place of residence or their 

car.  

In the vector controlling for consumer behavior variables, we measure the household’s 

financial capacity as a binary variable which holds a value of 1 if the household has $2,000 or more 

in liquid assets. Our budgeting variable is a binary and holds a value of 1 if the household reported 

previously skipped meals because of budgeting problems. The Grocery List variable is binary and 

holds a value of 1 if the respondent “almost always” or “most of the time” shops with a grocery 

store list according to their survey. Health Interest is a binary variable and holds a value of 1 if the 

household tried to follow the recommendations of the MyPryamid plan.  

In our vector controlling for the food market structure, rural is a binary variable with a 

value of one if the household lives in a rural census tract according to the US Census Bureau. 

DistNearSNAP represents the closest distance to the nearest retailer accepting SNAP benefits. 

TotalSuperMarket represents the county total number of supermarkets, superstores, and large 

grocery stores. TotalNonSuperMarket represents the county total for non-supermarkets. 

DensitySuperMarket represents the number of supermarkets per 1000 people at the county level. 

DensityNonSuperMarket represents the number of non-supermarkets per 1000 people at the county 

level.  

To account for different food prices in different geographical regions, we also include 

binary variables indicating the household is located in either the South, West, or Midwest region of 

the US. We follow the US Census Bureau’s regional distinctions. A complete list of all variables 

used and how they are measured is provided in Table 3.  

 For our regression analysis we first used the ordinary least squares approach (OLS) with 
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different groups of control variables. We first estimated a model including only SNAP participation 

(Model 1), followed by a model with SNAP participation and household socio-demographic 

control variables (Model 2), a model with the same variables as Model 2 and consumer behavior 

variables (Model 3), and finally a model with the same variable as Model 3 plus the food market 

variables (Model 4). To account for potential endogeneity of the SNAP variable, we then used a 

method developed by Lewbel (2012) with the same models described above. In this method 

identification is achieved by having regressors that are uncorrelated with the product of 

heteroskedastic errors. This technique is especially helpful where instrumental variables are not 

available (Lewbel 2012; Lewbel 2007; Gregory et al. 2013; Almada and Tchernis 2015; Baum 

2011).  

Results 

 As noted in Table 3, the values for our expensiveness index range from 0.04 to 7.84 or 

approximately from 4% of the average value to nearly 800% of the average vale. This indicates a 

wide range of amount spent on food items. Similarly, the summary statistics indicate a wide range 

of household sizes where the logarithm of the household size range from 0 (1 person) to 2.64 (14 

people). Supermarket and non-supermarket densities range from zero per county capita to 0.5 and 1 

per county capita. The majority of the other variables used in this analysis are binary.  

All the coefficient estimates in Tables 4 and 5 represent the effect of SNAP participation on 

the expenditure index. Using the OLS method, we received mixed results regarding the 

significance of SNAP participation on the index representing the prices paid for food products by a 

household. Without controlling for household, consumer, or market variables, SNAP participants 

were found to have an expensiveness index that was 0.09 points lower (i.e., 9%) than SNAP 

nonparticipants. When we controlled for household variables, the effect of SNAP participation was 

still statistically significant and negative but the magnitude (in absolute value) of the difference 
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relative to SNAP nonparticipants was lower (0.05 points lower). When controlling for consumer 

and market variables, we found the effect SNAP participation was no longer statistically 

significantly. The magnitude of the change in the SNAP effect as more variables are added to the 

model is indicative of the relative importance of the control variables explaining the raw difference 

in expensiveness index values in Model 1 (Altonji et al. 2005). Thus, these results indicate 

shopping behavior and habits and the local food market structure, but particularly shopping 

behavior and habits, have a larger impact on the average prices a consumer pays for food products 

than the socio-demographic factors.  

 The regressions also showed a consistent negative statistically significant relationship 

between household size and our expensiveness index where each additional household member 

decreases the expensiveness index between 0.02 and 0.03 points. Age was also consistently found 

to hold a negative statistically significant relationship to the average prices paid for food items 

where a one-year increase in the age of the primary food purchaser decreases the expensiveness 

index by 0.002 points. Similar to findings in the previous literature, higher amounts of education 

were consistently associated with a higher expensiveness index where attainment of an associate, 

bachelor’s, and master’s degree or above were found to have a positive effect to the expensiveness 

index. Our findings indicate higher levels of education were found to have an expensiveness index 

that was between 0.08 and 0.07 points higher (i.e., 7-8%) for primary food purchasers with 

associate degrees, between 0.08 and 0.11 points higher (i.e., 8-11%) for primary food purchasers 

with a bachelor’s degree, and between 0.18 and 0.2 points higher (i.e., 11-20%) higher if the 

primary food purchaser obtained a master’s degree or above.  

 The financial capability variable demonstrated a consistent positive statistically significant 

relationship with the expensiveness index where a household with $2000 or above in liquid assets 

was found to have an expensiveness index a 0.07 higher that households with less than $2,000 in 
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liquid assets. Interestingly, using budgeting resulted in 0.07 and 0.08 lower amounts spent.  In the 

regression including the market variables, we found a statistically significant negative effect of the 

number of non-supermarket stores per 1000 county citizens on the expensiveness index. We also 

found a negative statistically negative effect of distance to the nearest SNAP-authorized retailer 

and the expensiveness index. We also found households located in the South, West, and Midwest 

regions of the US paid comparatively lower food prices relative to households located in the 

NorthEast region. This indicates geographical location may have a significant impact on prices 

paid for food items. Detailed results of our findings using the OLS approach are reported in Table 

4.  

 Our next of regressions, shown in Table 5, use the instrumental variable approach to 

account for endogeneity in the SNAP participation using Lewbel’s (2012) method. Over 

identification restrictions tests (Hansen J-statistic) fail to reject the null hypothesis that the moment 

conditions implied by the approach were valid, which provides some evidence about the validity of 

the approach used. Overall, we found little difference in the quantitative impacts and similar 

statistically significant relationships from our OLS estimations. We again found no statistically 

significant relationship between participation in SNAP and our expensiveness index when we 

controlled for consumer and market variables. The similarity of our results indicates robustness of 

the effects of SNAP participation on the expensiveness index10.  

Discussion and conclusion 

The main focus of the research was to estimate the effect of SNAP participation on the 

prices paid for food products.  The key consideration is whether SNAP participants were 

disadvantaged systematically in the cost of food purchases in the US food system.  Efficiency in 

                                                            
10 To account for price fluctuations for food items only available during certain seasons, we also add binary variables to 

indicated households made purchases during summer, autumn, and winter. These variables did not add additional 

explanatory power to our analysis.  
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the provision of SNAP benefits to recipients is the considerations here as even a small difference 

would be important in enhancing food security for the US population.  Although, on average, the 

expensiveness index of SNAP was found to be 0.09 points lower than the index of non-participants, 

when we control for the food market structure and consumer shopping behaviors and habits, 

participation in SNAP does not have a statistically significant impact on the prices households pay 

for food items. This likely indicates shopping behavior and habits and the food market structure 

play a comparatively more significant role in determining food prices paid for by families than 

participation in SNAP. This also yields the important conclusion that SNAP participants do not 

seem to be systematically disadvantaged in food purchases. 

This research showed that SNAP participants are not disadvantaged in their food purchases 

in the US food system, while controlling for effects that have not been possible in prior data sets.  

The analysis controlled for the significant effects of market structure (e.g. number of competitors in 

the market), individual characteristics (e.g. education, age, number of children) and food shopping 

behavior and habits (e.g. use of budgeting).  Of a particular relevance for SNAP, the data set 

establishes whether respondents are actually SNAP participants by checking with the list of actual 

enrollees.  This deals with the substantial under-reporting of SNAP participation in other data sets.  

Furthermore, the endogeneity of SNAP participation was controlled for using an instrumental 

variables method. 

An interesting issue that was explored in the analysis was the role of food shopping 

behavior, and it was found that using budgeting resulted in paying less for food purchases.  This is 

a traditional area where SNAP-Ed has focused efforts.  The results show that budgeting enables 

less expensive food purchases and suggests that SNAP-Ed efforts in this area should be continued 

and perhaps expanded. 
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Financial capacity, which held a positive statistically significant relationship to our 

expensiveness index, indicates households who are able to attain savings are more likely to pay 

higher prices for food items. Our variables controlling for the local market for food items indicates 

both concentration of non-supermarket stores and closer proximity to SNAP authorized retailers 

were associated with comparatively lower prices paid for food items. Although smaller (non-

supermarket) stores are typically associated with comparatively higher prices than larger 

(supermarket) stores, it is possible higher competition for consumer patronage drives down prices. 

Both these findings demonstrate if the consumer is knowledgeable of potential bargains or saving 

opportunities in their local food market, they will be better able to attain comparatively lower food 

costs.  

 As the ability to effectively use SNAP to lower food costs is jointly related to the 

participating households’ local food market and their specific consumer behaviors, it may be 

fruitful for researchers and policy makers to further examine these relationships specifically. It may 

be particularly fruitful to provide households participating in SNAP with additional information or 

educational materials on effective budgeting, financial planning, and shopping strategies for their 

local market environment. This would provide households with both the means and knowledge to 

pay comparatively lower food prices.   

 

 

 

 

 

 

 



Food APS Research at UKCPR – Page 238 

 

References 

Aguiar, M., & E. Hurst. 2007. Life-Cycle Prices and Production. The American Economic Review, 

97(5): 1533-1559. 

Almada, L., and R. Tchernis. 2015. Measuring Effects of SNAP at the Intensive Margin. Working 

Paper, Georgia State University. Available 

http://www2.gsu.edu/~ecort/Almada%20and%20Tchernis%202-9-2015.pdf.  

Almada, L., McCarthy, I.M., & R. Tchernis. 2015. What can we learn about the effects of food 

stamps on obesity in the presence of misreporting? Working Paper, National Bureau of Economic 

Research. Available http://www.nber.org/data-

appendix/w21596/Food%20Stamps,%20Obesity,%20and%20Misreporting.pdf. 

Altonji, J.G., Elder, T.E., and C.R. Taber. 2005. Selection on Observed and Unobserved Variables: 

Assessing the Effectiveness of Catholic Schools. Journal of Political Economy, 113(1): 151-184.  

Andrews, M., Bhatta, R., and M. Ver Ploeg. 2013. An Alternative to Developing Stores in Food 

Deserts: Can Changes in SNAP Benefits Make a Difference? Applied Economic Perspectives and 

Policy, 35(1): 150-170. 

Baum, C. 2011. The Effects of Food Stamps on Obesity. Southern Economic Journal, 77(3): 623-

651. 

Beatty, T. K. 2010. Do the poor pay more for food? Evidence from the United Kingdom. 

American Journal of Agricultural Economics, 92(3): 608-621. 

Becker, G. 1965. A Theory of the Allocation of Time. Economic Journal, 75(299): 493-508. 

Bekesi, D., Loy, J.P., and C. Wiess. 2013. State Dependence and Preference Heterogeneity: The 

Hand of the Past on Breakfast Cereal Consumption. Presented at 87th Annual Conference of the 

Agricultural Economics Society. Available 

http://ageconsearch.umn.edu/bitstream/158699/2/Daniel_Bekesi_Paper__Bekesi_Loy_Weiss. pdf 

Blanciforti, L., Green, R., and S. Lane. 1981. Income and Expenditure for Relatively More versus 

Relatively Less Nutritious Food over the Life Cycle. American Journal of Agricultural Economics, 

62(2): 255-260. 

Broda, C., Leibtag, E., and D. Weinstein. 2009. The Role of Prices in Measuring the Poor’s Living 

Standards. Journal of Economic Perspectives, 23(2): 77-97. 

Chung, C., and S. Myers. 1999. Do the Poor Pay More for Food? An Analysis of Grocery Store 

Availability and Food Price Disparities. The Journal of Consumer Affairs, 33(2): 276-296. 

Courtemanche, C., & A. Carden, 2011. Supersizing supercenters? The impact of Walmart 

Supercenters on body mass index and obesity. Journal of Urban Economics, 69(2): 165-181. 



Food APS Research at UKCPR – Page 239 

 

Cronovich, R., Daneshvary, R., and K. Schwer. 1997. The determinants of coupon usage. Applied 

Economics, 29: 1631-1641. 

Drewnowski, A. and N. Darmon. 2005. The economics of obesity: dietary energy density and 

energy cost. American Society for Clinical Nutrition, 82(1): 2655-2735. 

Drewnowski, A. and S.E. Specter. 2004. Poverty and obesity: the role of energy density and energy 

costs. The American Journal of Clinical Nutrition, 79: 6-16. 

Ghez, G., and G. Becker 1975. The allocation of Goods over the Life Cycle. National Bureau of 

Economic Research. Available http://www.nber.org/books/ghetz75-1.  

Gregory, C., Ver Ploeg, M., Andrews, M., and A Coleman-Jensen. 2013. Supplementing Nutrition 

Assistance Program (SNAP) Participation Leads to Modest Changes in Diet Quality. United States 

Department of Agriculture, Economic Research Report Number 143.  

The Hamilton Project 2013. Strengthening SNAP for a More Food-Secure, Healthy America, 

Policy Brief 2013-06. Accessed 

http://www.hamiltonproject.org/files/downloads_and_links/THP_Schanzenbach_Brief_Final.pdf 

Hoch, S.,Kim, Byung-Do., Montgomery, A.L. and P.E. Rossi.1995. Determinants of Store-Level 

Price Elasticity. Journal of Marketing Research, 32(1): 17-29. 

IOM (Institute of Medicine) and NRC (National Research Council). 2013. Supplemental Nutrition 

Assistance Program: Examining the evidence to define benefit adequacy. Washington, DC: The 

National Academies Press. 

Kunreuther, H. 1973. Why the Poor Pay More For Food: Theoretical and Empirical Evidence. The 

Journal of Business, 46(3): 368-383. 

Kyureghian, G., Nayga, R. M., and S. Bhattacharya. 2013. The Effect of Food Store Access and 

Income on Household Purchases of Fruits and Vegetables: A Mixed Effects Analysis. Applied 

Economic Perspectives and Policy, 35(1): 69-88. 

Lewbel, A. 2007. Estimation of Average Treatment Effects with Misclassification. Econometria, 

75(2): 537-551. 

Lewbel, A. 2012. Using Heteroskedasticity to Indentify and Estimate Mismeasured and 

Endogenous Regressor Models. Journal of Business and Economic Statistics,  30(1): 67-80. 

Mendoza, R. 2008. Why Do the Poor Pay More? Exploring the Poverty Penalty Concept. Journal 

of International Development, 23: 1-28. 

Morland, K., Wing, S., and A. Diez Roux.2002. The contextual effect of the local food 

environment on residents' diets: the atherosclerosis risk in communities study. American Journal of 

Public Health, 92(11): 1761–1767. 



Food APS Research at UKCPR – Page 240 

 

Moulton, B.R. 1990. An Illustration of a Pitfall in Estimating the Effects of Aggregate Variables on 

Micro Units. Review of Economics and Statistics, 72: 334-38. 

Rao, V. 2000. Price heterogeneity and “Real” inequality: a case study of prices and poverty in rural 

south India. Review of Income and Wealth, 46(2): 201-211. 

Seethraman, R.B., Ainslie, A., and K. Chinagunta. 1999. Investigating Household State 

Dependence Effects Across Categories. Journal of Marketing Research, 36(4): 488-500. 

Stewart, H. and D. Dong. 2011. Variation in retail costs for fresh vegetables and salty snacks across 

communities in the United States. Food Policy, 36.2 (2011): 128-135. 

Taylor, R., and S. Villas-Boas. 2016. Food Store Choices of Poor Households: A Discrete Choice 

Analysis of the National Household Food Acquisition and Purchase Survey (FoodAPS). American 

Journal of Agricultural Economics, 98(2): 513-532. 

VerPleog, M.,  Breneman, V.,  Farrigan, T.,  Hamrick, K.,  Hopkins, D.,  Kaufman, P., Lin, B.H., 

Smith, T., Williams, R., Kinison, K., Oleander, C.,  Singh, A.,  and  E. Tuckermanty. 2009. Access 

to Affordable and Nutritious Food – Measuring and Understanding Food Deserts and Their 

Consequences: Report to Congress. Economics Research Service – USDA, AP-036. 

United States Department of Agriculture. 2016. Supplemental Nutrition Assistance Program 

Participation and Costs. Available 

http://www.fns.usda.gov/sites/default/files/pd/SNAPsummary.pdf.. 

bUnited States Department of Agriculture. 2016. Supplemental Nutrition Assistance Program 

Education (SNAP-Ed) Plan Guidance for Federal Fiscal Year (FFY) 2017. Available 

https://snaped.fns.usda.gov/sites/default/files/uploads/2017%20Guidance%20and%20Allocation%

20final%20Transmittal%20Letter.pdf.  

Wilde, P., Lloberea, J., 2014.Food Acquisition and Purchase Survey Geography Component 

(FoodAPS-GC). Friedman School of Nutrition Science and Policy, Tufts University. Available 

http://www.ers.usda.gov/datafiles/FoodAPS_National_Household_Food_Acquisition_and_Purchas

e_Survey/Geographic_component/GCcodebook.pdf.  

Wilde, P., Lloberea, J., and M. Ver Ploeg. 2014. Population Density, Poverty, and Food Retail 

Access in the United States: An Empirical Approach. International Food and Agribusiness 

Management Review, 17(Special Issue A): 171-186. 

Zenk, S.N., Shultz A.J., James, S.A., Bao, S., and M.L. Wilson. 2005. Neighborhood Racial 

Composition, Neighborhood Poverty, and the Spatial Accessibility of Supermarkets in 

Metropolitan Detroit. American Journal of Public Health, 95(4): 660-667.  

 

 



Food APS Research at UKCPR – Page 241 

 

Table 1: Food Items Surveyed* 
 

Aloe     Vera and 
Juices 

Coffee 
cappuccino 

drinks 

Flour/ meal Mexican food Potatoes/ onions 
(FRZ) 

Spreads (RFG) UWF 
radish 

Appetizers/   Snack 

rolls 

Coffee 

creamer 

Frankfurters Mexican sauce Poultry/ poultry 

substitutes 

Steak/ 

Worcestershire 

sauce 

UWF 

Spinach 

Aseptic juices Cold cereal Fresh    bread   and 

rolls 

Microwave 

package/ dinner 

entry 

Poultry (FRZ/RFG) Stuffing mixes UWF 

Sprouts 

Asian food Cookies Fresh eggs Milk Powdered Milk Sugar UWF 

Tomato 

Baby food Corn on the 
cob 

Frosting Milk flavoring/ 
cocoa mixes 

Premixed cocktails/ 
coolers 

Sugar substitutes UWF 
Yams 

Baby formula/ 

electrolytes 

Cottage 

cheese 

Frozen   meat   (not 

poultry) 

Mustard and 

ketchup 

Prepared deli/ 

gourmet food (RFG) 

Syrup UWF 

Tofu/ 

soybean 

Baked 

beans/Canned 

bread 

Crackers Fruit and vegetable 

preservative 

Natural cheese Prepared    vegetables 

(frozen) 

Tea bags/ loose UWF 

Vegetables 

Baked goods Cream 
cheese/ 

Cream 

cheese 

spread 

Fruit Noncarbonated 

water    (including 
flavored) 

Processed cheese Tea instant mix Vinegar 

Bakery snacks Creams/ 

creamers 

Gelatin/pudding 

product/ mixes 

Non fruit drinks Processed poultry 

(FRZ/RFG) 

Tea/ coffee ready 

to drink 

Vitamins 

Baking mixes Dessert 
toppings 

Glazed fruit Non chocolate 
candy 

Rice Tea/ coffee 
refrigerated 

Weight 

control/ 

nutritional 

liquid 

Baking needs Desserts Grated cheese Novelties Rice/ popcorn Tarts/ toaster 

pastries 

Weight 
control/ 

protein 

supplement 

Baking nuts Desserts/ 
toppings 

Gravy/ sauce mix Other breakfast 
food 

Salad dressing (RFG) Tomato products Whipped 
Toppings 

(RFG) 

Baking syrup/ 
Molasses 

Dinner 
sausage 

Gum Other condiments Salad dressing Tortillas/ 

eggrolls/  wanton 
wrap 

(refrigerated) 

Wine 

Barbeque sauce Dinners Ham Other foods Salad toppings Uncooked   meats 
(RFG) 

Yogurt 

Beer/Ale/Alcoholic 
cider 

Dinners/ 
entrees 

Hot cereal Other salty snacks 
(not nuts) 

Salad/ coleslaw 
(RFG) 

UWF beans  

Bottled juices Dip/dip 

mixes 

Ice   cream   cones/ 

mixes 

Other sauces Salty snacks UWF broccoli  

Bottled water Dips Ice cream/ sherbet Other snacks Seafood (FRZ) UWF cabbage  
Bread/ dough Dough/ 

biscuit 

dough 

Instant potatoes Pancake mixes Seafood (RFG) UWF carrots  

Bread crumbs/ 

Batter 

Dried fruit Jellies/ jam/ honey Pasta Seafood UWF cauliflower  

Breakfast foods Dried   meat 
snacks 

Juice/drink 
concentrate 

Pasta (FRZ) Shortening and oil UWF Celery  

Breakfast meats Drink mixes Juices Pasta (RFG) Side dishes (RFG) UWF cucumber  
Breath fresheners Dry   beans/ 

vegetables 

Juices/ drinks Pastry/ donuts Snack   bars/   granola 

bars 

UWF grapefruit  

Butter Dry   dinner 

mix (add 

meat) 

Lunch meat Peanut butter Snack    nuts/    seeds 

/corn nuts 

UWF lettuce  

Cake  (not  snack)/ 

Coffee cake 

Dry fruit 

snacks 

Luncheon meats Pickles/ relish 

(RFG) 

Soup UWF mixed 

vegetables 
 

Canned juices Dry 

packaged 

dinner 

mixes 

Lunches Pickles/ relish/ 
olives 

Soup/sides/ other 
(FRZ) 

UWF mushrooms  
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Canned/bottled 

fruit 

Energy 

drinks 

Margarine/ 

spreads/butters 

Pies and cakes Sour cream UWF onions 

Canned/prepared 

tea 

English 

muffins 

Marshmallows Pies (FRZ) Spaghetti/ Italian 

sauce 

UWF oranges 

Carbonated 
beverages 

Entrees Mutzod food Pizza (FRZ) Specialty nut butter UWF other fruit 

Cheesecakes Evaporated/ 

condensed 

milk 

Mayonnaise Pizza (RFG) Spices/ seasonings 

(not salt or pepper) 

UWF other 

vegetables 

Chocolate candy Fish/ 

seafood 

FRZ 

Meat (FRZ) Pizza products Spices/ seasonings UWF peas 

Cocktail mixes Fish/seafood Meat (RFG) Plain vegetables Spirits/ liquors UWF peppers 

Coffee Eggnog/ 

buttermilk/ 

flavored 

milk 

Meat Popcorn/  popcorn 

oil 

Sports drinks UWF potato 

*Where RFG refers to refrigerated items, FRZ to frozen items, and UWF represents uniform weight fresh items 
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Table 2 Summary Statistics 
 

Variable Obs Mean        Std. Dev.   

ExpensivenessIndex 3601 1.00 0.40   

SNAP 3601 0.28 0.44   

ln(Income) 3601 9.33 3.13   

ln(HhSize) 3601 0.94 0.59   

CompElder 3600 0.21 0.37   

CompChild 3600 0.14 0.21   

CompSmallChild 3600 0.08 0.15   

SinglePerson 3600 0.19 0.39   

Age 3597 46.05 16.07   

Male 3601 0.25 0.43   

GED 3601 0.29 0.45   

SomeCollege 3601 0.27 0.45   

AssociateDegree 3601 0.12 0.32   

BachelorsDegree 3601 0.15 0.36   

MastersorAbove 3601 0.07 0.26   

AutoOwn 3601 0.83 0.37   

HouseOwn 3601 0.50 0.50   

Rural 3601 0.29 0.45   

Black 3601 0.11 0.32   

Asian 3601 0.04 0.20   

Hispanic 3601 0.18 0.39   

FinancialCapacity 3601 0.35 0.47   

Budgeting 3601 0.08 0.27   

List 2951 0.40 0.49   

HealthInterest 3601 0.17 0.37   

DistNearSNAP 3601 0.90 1.39   

TotalSuperMarket 3601 130.73 235.70   

TotalNonSuperMarket 3601 239.47 370.68   

DensitySuperMarket 3601 0.12 0.04   

DensityNonSuperMarket 3601 0.26 0.12   

West 3601 0.22 0.42   

South 3601 0.36 0.48   

MidWest 3601 0.25 0.43   
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Table 3 Variable Categories and Explanations 
 
 
 

Category Variable Definition 

 Expensiveness Index (Ij ) Calculated as the sum of the cost of 

  a household’s food basket divided 

  by the average cost of a food basket 

  paid by other households 

 SNAP Binary variable indicating 

  administrative match household 

 
Household Vector (XH) 

 
ln(Income) 

received SNAP benefits 

Represents the logarithm 

  household’s income per year 

 Ln(HhSize) Represents the logarithm of 

  household size 

 CompElder Represents percentage of 

  household size composed of 

  members over 60 years old 

 CompChild Represents percentage of 

  household size composed of 

  members between the ages of 5 and 

  17 

 CompSmallChild Represents percentage of 

  household size composed of 

  members less than 5 years old 

 SinglePerson Binary variable indicating 

  household is composed of one 

  individual 

 Male Binary variable representing the 

  primary food purchaser is male 

 GED Binary variable representing food 

  purchaser has received a high 

  school diploma or equivalence 

 SomeCollege Binary variable representing 

  primary food purchaser has 

  received some college education 

  but has not received a college 

  degree 

 AssociatesDegree Binary variable representing 

  primary food purchaser holds an 

  associate’s degree 

 BachelorsDegree Binary variable representing 

  primary food purchaser holds a 

  bachelors degree 

 MastersorAbove Binary variable representing 

  primary food purchaser holds a 

  masters degree or a higher degree 

 AutoOwn Binary variable representing the 

  household owns a vehicle 

 HouseOwn Binary variable representing the 

  household owns their place of 

  residency 

 Black Binary variable representing the 

  primary food purchaser is Black 
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 Asian Binary variable representing the 

primary food purchaser is Asian 

Hispanic binary variable which holds a value 

 of 1 if the primary food purchaser is 

 
Consumer Behavior Vector (XC) 

 
FinancialCapacity 

Hispanic 

Binary variable representing the 

  household has $2,000 or more in 

  liquid assets 

 Budgeting Binary variable representing the 

  household has ever skipped meals 

  because of budgeting problems 

 List Binary variable 

  representingprimary food purchaser 

  “almost always” or “most of the 

  time” shops with a grocery store 
list  HealthInterest Binary variable representing 

  household tried to follow the 

  recommendations of the 

  MyPryamid plain 

 Rural Binary variable representing 

  household lives in a rural census 

  tract according to the US Census 

 
Market Variables Vector ( XM) 

 
DistNearSNAP 

Bureau 

Represents distance to nearest 

  retailer accepting SNAP benefits 

 TotalSuperMarket Represents county total number of 

  supermarkets, superstores, and large 

  grocery stores 

 TotalNonSuperMarket Represents the county total number 

  of nonsupermarkets 

 DensitySuperMarket Represents the number of 

  supermarkets per 1000 people at the 

  county level 

 DensityNonSuperMarket Represents the number of 

  nonsupermarkets per 1000 people at 

  the county level 

 West Binary variable representing 

  household is located in the West 

  region of the United States 

 South Binary variable representing 

  household is located in the South 

  region of the United States 

 MidWest Binary variable representing 

  household is located in the Mid- 

  West region of the United States 
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Table 4 OLS Results 

 Model 1 Model 2 Model 3 Model 4 

SNAP 

Log Annual Income Log 

Household Size Percent  

Elderly Members 

-0.09 (-6.73)*** -0.05(-3.36)*** 

0.00 (1.22) 

-0.08 (-5.21)*** 

0.03 (0.77) 

-0.02 (-1.35) 

0.00(0.54) 

-0.06 (-3.73)*** 

-0.01 (-0.67) 

-0.02 (-1.27) 

0.00 (0.59) 

-0.06 (-3.68)*** 

-0.02 (-0.76) 

Percent Children  0.00 (0.06) -0.01 (-0.31) -0.01 (-0.42) 

Percent Small Children 

Single Person 

Age 

Male 

GED 

Some College 

Associate Degree 

Bachelor’s 

Degree Master’s 

or Above Owns 

Car 

Owns House 

Rural Location 

Black 

Asian 

Hispanic 

Financial Capacity 

Budgeting 

Uses Grocery List 

 0.02 (0.90) 

-0.06 (-2.40)** 

-0.00 (-3.81)*** 

-0.03 (-2.15)** 

0.01 (0.47) 

0.03 (1.90)* 

0.08 (3.08)*** 

0.11 (5.09)*** 

0.20 (6.64)*** 

-0.04 (-1.70)** 

0.03 (1.89)* 

-0.05 (-3.77)*** 

-0.05 (-2.15) ** 

-0.09 (-2.23)** 

-0.04 (-2.54)** 

0.01 (0.54) 

-0.04 (-1.47) 

-0.00 (-3.10)*** 

-0.03 (-2.03)** 

-0.00 (-0.12) 

0.00 (1.19) 

0.06 (2.42)** 

0.09 (3.98)*** 

0.20 (5.57)*** 

-0.03 (-1.42) 

0.001  (0.41) 

-0.05 (-3.02)*** 

-0.03 (-1.32) 

-0.09 (-1.85)* 

-0.04 (-1.92)* 

0.07 (4.68)*** 

-0.05 (-1.94)* 

0.00 (0.13) 

0.01 (0.34) 

-0.03 (-1.32) 

-0.00 (-3.26)*** 

-0.03 (-1.84)* 

-0.01 (-0.41) 

0.02 (1.15) 

0.06 (2.26)** 

0.07  (3.68)*** 

0.19 (5.26)*** 

-0.03 (-1.28) 

0.08 (0.54) 

-0.03 (-1.60) 

-0.02 (-0.98) 

-0.07 (-1.73)* 

-0.03 (-1.73)* 

0.07 (4.60)*** 

-0.05  (-1.92)* 

0.00 (0.13) 

Health Interest 

Distance Nearest SNAP retailer 

Total Supermarkets 

Total NonSupermarkets 

  0.01 (0.61) 0.01 (0.64) 

-0.01 (-1.83)* 

0.00 (0.71) 

-0.00(-1.24) 

Density of Supermarket    -0.03 (-0.19) 

Density of NonSupermarkets    -0.15  (-2.69)** 

West    -0.07 (-2.57)** 

South    -0.05 (-2.23)* 

MidWest    -0.09 (-4.17)*** 

Constant 1.02 (124.58)*** 1.18 (23.88)*** 1.13 (28.38)*** 1.23 (27.22)*** 

N 3601 3597 2949 2949 

F-stat 45.26 7.60 8.34 7.35 

R^2 0.01 0.05 0.07 0.08 

Model 1 regresses our expensiveness index on our SNAP variable. Model 2 includes SNAP and our household variables. Model 3 includes SNAP, 
household, and consumer behavior variables. Model 4 includes our SNAP, household, consumer behavior, and market variab les.  The decrease in 

observations for Model 3 and 4 are a result of households not reporting if they use a grocery list when making food purchasin g decisions. We also 

tested the robustness of our results by using the household weights provided by the FoodAPS dataset sampling system. When we used these weights, 

our results remained largely the same.  t statistics in parentheses where * p<0.1 ** p<0.05 *** p<0.01, Regressions reported with robust standard 

errors. 
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Table 5 IV Using the Lewbel Method 
 

 Model 1 Model 2 Model 3 

SNAP -0.003 (-0.10) 0.03 (1.15) 0.03 (1.21) 

Log Annual Income Log 

Household Size Percent  

Elderly Members Percent 

Children 

Percent Small Children 

Single Person 

Age 

Male 

GED 

0.00 (1.52) 

-0.08 (-5.68)*** 

0.03 (1.10) 

-0.00 (-0.08) 

0.02 (1.02) 

-0.07 (-3.36)*** 

-0.00 (-3.76)*** 

-0.02 (-1.53) 

0.00 (0.15) 

0.00 (0.63) 

-0.07 (-5.22)*** 

-0.01 (-0.28) 

-0.00 (-0.01) 

0.02 (1.26) 

-0.05 (-0.20) 

-0.00 (-3.41)*** 

-0.03 (-1.80)* 

0.02 (1.13) 

0.00 (0.64) 

-0.07 (-5.23)*** 

-0.01 (-0.29) 

-0.01 (-0.48) 

0.02 (1.15) 

-0.04 (-0.18) 

-0.00 (-3.84)*** 

-0.02 (1.65)* 

0.00 (0.03) 

Some College 
 

Associate Degree 

Bachelors Degree 

Masters or Above 

Owns Car 

Owns House 

Rural Location 

Black 

Asian 

Hispanic 

Financial Capacity 

Budgeting 

Uses Grocery List 

0.03 (1.96)* 

0.06 (2.55)*** 

0.11 (5.49)*** 

0.21 (6.89)*** 

-0.01 (-0.63)* 

0.03 (2.68)** 

-0.06 (-4.38)*** 

-0.05 (-2.57)*** 

-0.08 (-2.07)** 

-0.05 (-2.84)** 

0.01 (0.55) 

0.05 (2.33)** 

0.11 (4.92)*** 

0.21 (5.95)*** 

-0.01 (-0.61) 

0.02 (1.64) 

-0.05 (-3.53)*** 

-0.04 (-2.09)** 

-0.08 (-1.92)* 

-0.04 (-1.90)** 

0.08 (5.32)*** 

-0.07 (-2.87)*** 

-0.00 (-0.28) 

0.02 (1.22) 

0.05 (2.41)** 

0.10 (4.77)*** 

0.20 (5.75)*** 

-0.01 (-0.54) 

0.02 (1.72)* 

-0.04 (-2.54)** 

-0.04 (-1.85)* 

-0.08 (-2.03)** 

-0.04 (-1.73)* 

0.08 (5.31)*** 

-0.08 (-3.53)*** 

0.00 (0.11) 

Health Interest 

Distance Nearest SNAP retailer 

Total Supermarkets 

Total NonSupermarkets 

Density of Supermarket 

 0.00 (0.00) 0.00 (0.09) 

-0.01 (-1.44) 

0.00 (0.33) 

-0.00 (-0.88) 

0.01 (0.68) 

Density of NonSupermarkets   -0.17 (-3.05)*** 

West   -0.07 (-2.84)*** 

South   -0.04 (-2.26)** 

MidWest   -0.09 (-4.13)*** 

Constant 1.11 (28.67)*** 1.14 (28.44)*** 1.18 (27.39)*** 

N 3597 2949 2949 

F-stat 8.67 9.18 8.35 

Centered R^2 0.05 0.06 0.07 

Hansen J-Stat 25.34 24.32 36.65 

Model 1 includes SNAP and our household variables. Model 2 includes 
SNAP, household, and consumer behavior variables.  Model 3 includes our 
SNAP, household, consumer behavior, and market variables. We do not 
include a regression of our expensiveness index and our SNAP variable only 
because the method cannot be used with a single regressor. Z score in 
parentheses. Where * p<0.1 ** p<0.05 *** p<0.01, Regressions reported with robust 
standard errors 
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Abstract 

We employ multilevel models with neighborhood and state effects (fixed effects and 

random effects) to analyze the associations between household characteristics, neighborhood 

characteristics, regional attributes and dietary quality. We use data from the USDA National 

Household Food Acquisition and Purchase Survey. Our dependent variable is a Healthy Eating 

Index that incorporates dollars spent and amount of food in several categories. Key explanatory 

variables at the household level include variables household financial condition, housing burden, 

home ownership, car access, household size. We include a variable for the number of large food 

stores in the neighborhood, a neighborhood deprivation index, and a regional food price index, 

along with neighborhood and state random effects. Our model shows that at the household level, 

financial condition and home ownership are significantly and positively related to dietary 

quality, while U.S. citizenship status and living in a rural area were negatively associated with 

dietary quality. The number of large food stores in the neighborhood is significantly and 

positively associated with dietary quality. Neighborhood deprivation is not significantly 

associated with dietary quality, nor is the regional food price index. However, the neighborhood 

and state random effects variables were both significant, and the neighborhood variable explains 

close to half of the variation in household dietary quality. Our results highlight the complexity of 

understanding factors at different spatial scales that influence dietary quality. Food environments 

are important in shaping household food decisions, as are household finances. Future research 

should work on untangling additional neighborhood-level factors that matter for dietary quality. 
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Executive summary 

A growing body of literature focuses on disparities in access to healthy foods and on the 

relationships between local food environments and outcomes related to diet and health. This 

work has had direct policy implications, as evidenced by healthier food retail legislation at the 

state and federal levels. At the same time, recent research also suggests that the food 

environment-diet relationship is far from straightforward, and that household finances, not 

proximity to stores, may be more important. These studies suggest that the local food 

environment interacts in critical ways with issues related to poverty and household resources. In 

this analysis, we employ multilevel models with neighborhood and state effects (fixed effects 

and random effects) to analyze the associations between household characteristics, neighborhood 

characteristics, regional attributes and dietary quality. We use data from the USDA National 

Household Food Acquisition and Purchase Survey (FoodAPS). Our dependent variable is a 

Healthy Eating Index that incorporates dollars spent and amount of food (measured by weight) in 

several categories: fruit, vegetables, snacks, and sweetened beverages. Key explanatory variables 

at the household level include variables household financial condition, housing burden, home 

ownership, car access, household size. We include a variable for the number of large food stores 

in the neighborhood, a neighborhood deprivation index, and a regional food price index, along 

with neighborhood and state random effects. Our model shows that at the household level, 

financial condition and home ownership are significantly and positively related to dietary 

quality, while U.S. citizenship status and living in a rural area were negatively associated with 

dietary quality. The number of large food stores in the neighborhood is significantly and 

positively associated with dietary quality. Neighborhood deprivation is not significantly 

associated with dietary quality, nor is the regional food price index. However, the neighborhood 

and state random effects variables were both significant, and the neighborhood variable explains 
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close to half of the variation in household dietary quality. Our results highlight the complexity of 

understanding factors at different spatial scales that influence dietary quality. Food environments 

are important in shaping household food decisions, as are household finances. Future research 

should work on untangling additional neighborhood-level factors that matter for dietary quality. 

Introduction 

 

An increasing number of researchers explore disparities in access to healthy foods and 

the relationships between local food environments and dietary outcomes1-3. Residents of poorer 

neighborhoods, neighborhoods with higher proportions of people of color, and rural areas tend to 

live farther away from large supermarkets or supercenters4-6. Though these neighborhoods may 

have a higher number of small grocery, corner, and convenience stores5,7,8, scholars point that 

that these stores tend to carry fewer healthy foods9,10 and have higher prices than supermarkets11-

13. The majority of food environment research has focused on proximity-based measures of food 

access; for example, scholars for example, scholars have compared different types of food stores 

in terms of differences in price, food availability, and food quality 14-16. However, recent studies 

suggest that the food environment-diet relationship is far from straightforward. 

While some scholars have found a correlation between consumption of healthy foods 

(e.g. fresh produce) and access to large supermarkets17,18, two recent large-scale studies found 

that improved access to supermarkets was generally unrelated to dietary quality4,5. To account 

for this, researchers suggest that household finances are a more critical factor in determining 

what people eat than proximity to food stores6-8. In fact, many people intentionally bypass their 

nearest stores altogether, preferring to incur high travel costs to reach farther food stores that 

offer more affordable food and more healthy options19-23. Most recently, a report from the large-

scale, nationally representative FoodAPS project found that the average consumer’s primary 
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store is not the closest one to their home, and that they travel as much as an additional 1.5 miles 

to reach their preferred store24. This study also highlights the role that transportation can play in 

food purchasing decisions; fewer consumers without cars reported bypassing their nearest store 

to shop for food. Several other studies have similarly found that transportation can be a major 

barrier to food access for low-income individuals25-27, with others finding that they often travel 

farther for food than wealthier individuals, suggesting higher transportation costs28-30. 

These studies suggest that the local food environment interacts in critical ways with 

issues related to poverty and household resources. Until now, however, we have not had 

representative data that would allow us to contextualize family food decisions within the 

complex array of factors at the household and neighborhood level. Yet, the consequences of 

living in an area with poor food access are likely to vary from place to place and for different 

types of households. For example, food access may look very different in urban and rural areas, 

for several reasons; these might include the availability of public transportation in urban vs. rural 

areas, lower cost of living in rural areas, and potentially greater access to gardens or farm 

produce in rural areas31. Race and ethnicity may also differentially affect people’s experiences 

living in places with low food access32. In order to expand our understanding of issues of food 

access beyond proximity to different store types, a growing number of scholars call for 

multilevel studies that explore interactions between household variables and neighborhood 

variables and their varying effects on dietary outcomes1,7,33.  

Methods 

 

This study employs multilevel models with neighborhood and state effects (fixed effects 

and random effects) to analyze the associations between household characteristics, neighborhood 

characteristics, regional attributes and dietary quality. We used the R Project for Statistical 
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Computing version 3.0.1 for analysis, including library packages MASS version 7.3 and nlme 

version 3.1. Data were imported into R from SAS and merged by each individual’s household 

identification number (HHNUM).  

At the household level (level 1), we expect that characteristics such as financial well-

being, educational attainment, race/ethnicity, household structure, citizenship status, 

homeownership, access to a car, and the number of large stores in the neighborhood will impact 

dietary choices. We recognize that households located within the same census block group will 

not be independent from one another with regards to the number of large stores in the 

neighborhood. We also expect that neighborhood-level conditions could impact the local social 

and food environment within which household dietary decisions are made. For these reasons, we 

investigate effects at the neighborhood level (level 2). Here, we expect that neighborhood 

characteristics such as neighborhood deprivation (a fixed effect specified in the model through 

an index score at the block group level) will impact household dietary choices. Because other 

aspects of the neighborhood environment (i.e., culture, social trust) could also be important, we 

include a random effect at the neighborhood level as well.  

Next, we are interested in the possibility that the cost of food varies across space and that 

these price differences impact food choices. Data on average food prices are available in the 

FoodAPS data at the county level and are included in our model as a fixed effect. Because the 

FoodAPS data are structured so that only one or a small number of usually spatially clustered 

counties were sampled within each state, it is difficult to separate the cost of food at the county 

level from other county-level social and economic conditions that might impact food choices or 

from state-level effects that could be related to state policy differences in providing access to 

food and social services. So, given county-state complications in the structure of the data, we 
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include a random state effect that we believe captures some mix of social and economic regional 

effects that occur at the county or state level (level 3).  

Our proposed research approach included spatial analysis to investigate the possibility 

that relationships between household characteristics and diet vary across space, using 

geographically weighted regression (GWR) at the block group level. As we explored the data, we 

decided that approach was not viable or appropriate to the data structure and decided to 

implement the multilevel approach described above to model spatial effects through 

neighborhood and regional effects. The FoodAPS data are structured so that the sample of 3,286 

households for which relevant data are available are located within 27 states with a range of 

between 22 to 439 observations per state. Relatively few (n= 649 of over 200,000) block groups 

are represented in the sample, with a range of 1 to 38 household observations within each block 

group and an average of 5.1 households per block group. The sample size was not large enough 

within the average block group to reasonably represent the block group, nor were there enough 

block groups included in the dataset to distinguish spatial effects from the impacts of observable 

conditions, such as rurality and economic conditions. In short, GWR is an exploratory tool that 

works well for uncovering possible spatial variance in relationships between variables; but we 

feel like the multilevel modeling approach we ultimately decided to take is both better suited to 

the data structure and also offers more concrete and policy applicable findings.  

Data 

We use data from the USDA National Household Food Acquisition and Purchase Survey 

(FoodAPS). Our dependent variable is a Healthy Eating Index that incorporates dollars spent and 

amount of food (measured by weight) in several categories: fruit, vegetables, snacks, and 

sweetened beverages. The Healthy Eating Index was created using principal components analysis 
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based on the following variables: dollars per person spent on fruits, dollars per person spent on 

vegetables, grams of fruits acquired per person, grams of vegetables acquired per person, dollars 

per person spent on snacks, and dollars per person spent on sweetened beverages. The 

components load on three factors with an eigenvalue >1. The first is essentially the “buying a lot 

of food” factor, which is closely related to household size. The factor of interest is the second 

one, the Healthy Eating Index. We scored this second factor so that fruits and vegetables 

contributed positively to the index, and snacks and sweetened beverages contributed negatively 

to the index. The third factor is of potential interest for future analysis, and is essentially those 

households that buy a lot of sweetened beverages but not snacks. 

Table 1 outlines the variables included in the analysis. Key explanatory variables at the 

household level include a household financial index, based on principal component analysis that 

included monthly household income (positively associated with index), self-reported problems 

paying utility bills (negatively associated with the index), self-reported problems paying other 

bills (negatively associated with the index), and self-reported financial condition (negatively 

associated with index); this latter variable is a categorical measure of how comfortable and 

secure financially the head of household feels, ranging from 1, “very comfortable and secure,” to 

5, “in over your head”. We also include a measure to capture the influence of housing 

circumstances12,13: housing burden, operationalized as shelter costs for the previous month 

(including rent or mortgage, insurance, property taxes, and utilities) as a proportion of the 

previous month’s household income. In addition, we include a binary variable measuring home 

ownership and a binary variable measuring access to a car, which previous research indicates 

may affect the food environment-diet relationship14. We also include control variables at the 

household level, including household size, the number of children under age 12, whether the 
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home is in a rural area, and the primary respondent’s race/ethnicity, citizenship status, and 

education level.  

The concept of “food access” includes a number of dimensions, including availability and 

affordability3.  Our model operationalizes availability as the number of supermarkets within 1 

mile of the centroid of urban block groups and within 10 miles of rural block groups1. We 

operationalize affordability using an index of food prices in the county in which participants live, 

which is the measure most consistently linked to dietary outcomes3. 

Finally, based on previous qualitative research conducted with low-income women in 

North Carolina, we hypothesized that neighborhood deprivation, previously linked to health 

outcomes15-17, would also influence dietary quality. Using several variables derived from the 

Census 2010 and the American Community Survey (2008-2012), to represent multiple, 

theoretically-distinct constructs of neighborhood social disadvantage16, we use a neighborhood 

deprivation index. The neighborhood deprivation index was developed using principal 

components analysis based on the following variables: median household income (negatively 

associated with index), percent homeowners (negatively associated with index), percent single 

parent households among households with children (positively associated with index), and 

percent Black race (positively associated with index). The index is calculated at the census tract 

level. 

Results 

Results are shown in Table 2, page 254. 

Model 1 is a simple OLS model based on household-level variables that we expected 

would impact healthy eating. For this model, the Healthy Eating Index was the dependent 

                                                            
1 Rural is operationalized as a sparsely populated area with fewer than 2,500 people, while urban areas have more 

than 2,500 people.  
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variable. Based on Model 1, we found that housing burden, car access, household size, the 

presence of children in the household, and whether the head of household was Black or Latino 

had no effect on healthy eating. The following variables were positively associated with dietary 

quality: financial condition, home ownership, education of the head of household, and whether 

the head of household identified her or her race as “other” (not White, Black, or Hispanic). The 

number of supermarkets in the neighborhood was also positively associated with dietary quality. 

Citizenship status and living in a rural area were negatively associated with dietary quality. 

Next, we wanted to see how neighborhood conditions impacted healthy eating. Model 2 

is a multilevel mixed effects model. It includes the same level 1 household characteristics as the 

household level OLS model, but it also includes fixed effects for neighborhood deprivation (level 

2 - block group) and for the regional food price index (level 3- state/county), as well as random 

effects at the neighborhood and state levels. We not that we are referring to level 3 as regional 

effects because there are only a few counties in each state, with counties clustered together, 

making it difficult to separate county and state effects. The "regional effects" are thus a 

combination of state and county effects. 

Understanding how neighborhood conditions impact dietary quality is of particular 

importance to our research question. Based on our hypothesis that neighborhood deprivation 

would have a significant effect on household food purchases and thus dietary quality, Model 2 

includes an index for neighborhood deprivation. Altogether, Model 2 is specified to address four 

concurrent issues that can't be addressed with the OLS model: (1) to adjust for the fact that 

households within the same neighborhoods are not independent from one another, particularly on 

variables such as number of stores in the neighborhood and the neighborhood deprivation index; 

(2) to test for the effects of neighborhood-level impacts on household diets; (3) to test the 
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relationship between regional food prices and dietary quality; and (4) to adjust for the fact that 

unspecified factors operating at the regional level (e.g., social and economic conditions, state and 

local policies) may impact household dietary quality. 

The results for Model 2 are shown in Table 2. Most of the relationships identified as 

significant in Model 1 are still significant in Model 2. The only change is that the years of 

education of the head of household is no longer significant. The number of supermarkets in the 

neighborhood is still significant and positively associated with dietary quality. However, 

contrary to our expectations, neither the county-level food price index nor the index for 

neighborhood deprivation is significant. In other words, living in a deprived neighborhood or a 

region with higher food prices does not significantly affect healthy eating. However, 

neighborhood conditions do matter. Approximately 3.1% of the variation between households 

can be explained by unspecified random neighborhood effects, or neighborhood-level 

differences. This is a small relationship, but it is almost half of the overall variance explained in 

the model that includes multiple household level characteristics. Therefore, there are unspecified 

neighborhood conditions (for example, local culture, social trust, or other aspects of the food 

retail environment) that account for as much of the variation in household level dietary quality as 

a full suite of household-level variables. State effects are also statistically significant, but 

substantively negligible.  

Discussion 

Our results highlight the complexity of understanding factors at different spatial scales 

that influence dietary quality. Overall, our model predicted only 6.8% of the variation in 

household dietary quality. Dietary quality is likely affected by a wide range of factors at multiple 

scales, which helps explain our low adjusted R2 value. This is further complicated by the fact that 
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our model measures dietary quality in terms of household food purchases, as opposed to 

individual people’s consumption patterns (as in the case of dietary recalls, for example). We note 

that previous versions of the model—for example, those with dependent variables comprised of 

just one or two dietary components, such as per person dollars spent on fruit or vegetables—had 

even lower R2 values. However, as we continue to refine our model, we will work to identify 

additional key variables to improve our model.   

Given this caveat, however, our research suggests that places matters. First, food 

environments do matter: the number of supermarkets in a neighborhood was significantly related 

to household dietary quality. Contrary to our expectations, however, the county price index was 

not significantly related to dietary quality when controlling for other factors. 

In addition, and echoing several recent studies6-8, our results highlight the importance of 

household finances in shaping food decisions and by extension, dietary quality. We found a 

significant relationship between household dietary quality and financial condition. Although 

housing burden was not significantly related to dietary quality, home ownership had a significant 

and positive effect on dietary quality. 

In general, we found a lack of associations between the race/ethnicity of the head of 

household and dietary quality, with one exception. Having a household head who identified as 

“other” (non-White, Black, or Hispanic) was significantly and positively associated with dietary 

quality. This category consisted of people identifying as Asian, Native Hawaiian or Other Pacific 

Islander, American Indian or Alaska Native, or another race. In addition, although there was not 

a significant association between Hispanic heads of household and dietary quality, there was a 

significant negative association between U.S. citizenship and dietary quality. In other words, 

non-citizens had higher dietary quality. This is in keeping with research on immigrants and 
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dietary acculturation. This literature finds that immigrants generally have healthier diets than the 

U.S. born population among arrival to the United States, and that that dietary quality deteriorates 

as immigrants adapt to U.S. culture. Among Latinos, acculturation is generally associated with 

less healthy diets, including lower intake of fruits and vegetables and higher consumption of fast 

food, junk food, and sugar-sweetened beverages.34-37 

Although our index of neighborhood material hardship was not significantly related to 

dietary quality, we conclude based on our analysis that place matters. First, living in a rural area 

was significantly and negatively related to dietary quality. While it is often assumed that people 

living in rural areas will have better access to healthy food because of farming and gardening 

traditions, studies of food insecurity indicate that rural areas have higher food insecurity rates 

than urban, suburban or exurban areas, as well as higher poverty and lower educational 

attainment rates38-39. Researchers have attributed differences in food access between rural and 

urban areas in part to a lack of transportation infrastructure in rural areas, as well as to larger 

distances between supermarkets due to insufficient population bases and issues with food 

distribution39-40. Second, the random neighborhood effects variable was significant. We note that 

the index of neighborhood deprivation is highly negatively correlated with home ownership (-

0.38); homeowners are less likely to live in deprived neighborhoods. (In addition, the index of 

neighborhood deprivation includes percent home ownership as one component). Because of this, 

neighborhood deprivation becomes significant if we take homeownership out of the model. 

Similarly, neighborhood deprivation is highly negatively correlated with the number of large 

supermarkets; more deprived neighborhoods have fewer stores. Taken together, this means that 

neighborhood deprivation may matter, but that is so closely linked to home ownership and the 

presence of supermarkets that it becomes insignificant when we include these variables. 
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However, our multilevel model also tests for neighborhood effects beyond what we’ve measured 

with the deprivation scale. This suggests that neighborhood does matter, even net of the effects 

of the number of stores in a neighborhood and presence of homeowner-occupied houses.  

In subsequent analyses, we will work to try to identify additional neighborhood-level 

variables that could explain this variation. These could include, for example, the prevalence in 

the neighborhood of other types of food retail outlets besides large supermarkets: for example, 

farmers’ markets or smaller corner or “ethnic” grocery stores, on the one hand, or fast food 

restaurants, on the other hand. Particularly given our finding about citizenship status, it could 

also include a measure of the degree to which neighborhoods are isolated immigrant enclaves, 

which could provide a protective effect on dietary quality by enabling immigrants to maintain 

food traditions that are healthier than typical U.S. diets. A study of Hispanic immigrants in New 

York City found that adherence to a healthier diet pattern was positively associated with both 

neighborhood poverty and neighborhood linguistic isolation; the authors conclude that this 

research supports the hypothesis that living in immigrant enclaves is associated with healthy diet 

patterns among Hispanics.41 

Conclusions 

Our findings demonstrate promising evidence that place matters for dietary quality. Food 

environments explain part, but not all, of the relationship between dietary quality and 

neighborhoods. Households in neighborhoods with more supermarkets had better dietary quality. 

Home ownership was also significantly and positively associated with dietary quality. Both of 

these factors are negatively correlated with neighborhood deprivation. Thus, although 

neighborhood deprivation is not significant in our final model, this may be in part because 

neighborhood deprivation predicts other factors that matter for dietary quality, such as home 
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ownership and presence of supermarkets. Furthermore, we found a significant neighborhood 

effect that is still unspecified; future analyses will attempt to identify other neighborhood-level 

factors that could better explain variation in dietary quality. 

 Some variables that we predicted would be significant were not; for example, car access 

was not significantly related to dietary quality. However, our research does support our general 

expectation that the households that are worst off likely experience a cluster of factors, including 

low food access, high economic stress, and unstable housing (measured by a lack of home 

ownership).  

This research challenges public health experts and practitioners to think more 

comprehensively about how consumers make food decisions. Our findings may suggest, for 

example, that while policies to increase access to retail food stores are helpful, policies to 

increase household financial resources and ensure access to adequate housing are also critical. 

Most challengingly, it suggests that the most effective promotion of healthy food decisions will 

require a “mainstreaming” of the issue, so that community development, regional transport, and 

anti-poverty programs all adopt healthy food promotion as an important planning principle.  
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Table 1. Variables included in analysis. 

Outcome Prevalence/average Notes 

Healthy Eating Index  Principal components analysis based on the following 

variables: dollars per person spent on fruits, dollars per 

person spent on vegetables, grams of fruits acquired per 

person, grams of vegetables acquired per person, dollars 

per person spent on snacks, and dollars per person spent 

on sweetened beverages.  

Exposures   

Financial condition 

index 

 Principal components analysis based on the following 

variables: Monthly household income, self-reported 

financial index (categorical variable from 1 = very 

comfortable and secure to 5 = in over your head), self-

reported difficulty paying housing expenses in the last six 

months, and self-reported difficulty paying utilities in the 

last six months. 

Housing burden Mean = 39% 

SD = 28% 

Monthly housing expenses (rent/mortgage, insurance, 

property tax, and utilities) as a proportion of monthly 

household income. People with zero income AND zero 

housing expenses were considered to have a 0% housing 

burden. People with zero income who do have housing 

expenses were considered to have 100% housing burden.  

Home ownership No = 2095 

Yes = 2138 

Whether or not the primary respondent owns the home in 

which they live. 

Car access No = 678 

Yes = 3681 

Whether the household has access to a car when needed.  

Household size Mean = 3.0  

SD = 1.7 

Total number of people (children and adults) in the 

household. 

Young kids in 

household 

Mean = 0.58 

SD = 1.0 

Number of children in the household under age 12. 

Rural No = 3159 

Yes = 1208 

Whether the household is in a rural census tract. 

Race/ethnicity 

 

White = 2618 

Black = 559 

Hispanic = 858 

Other = 329 

Race/ethnicity of the primary respondent. Respondents 

who indicated that they are both Hispanic and another race 

were only counted as Hispanic for this variable.  

Citizenship status No = 433 

Yes = 3925 

Whether the primary respondent is a U.S. citizen. 

Educational 

attainment 

 

Mean = 20.2 

SD = 2.8 

Years of education of the primary respondent.  

Stores in 

neighborhood 

Mean = 4.2 

SD = 7.9 

Number of large supermarkets within 1-mile of urban and 

10-miles of rural homes. 

Food price index Mean = $262.50 

SD = $54.90 

Average food basket price for a family of four, at the 

county level. 

Neighborhood 

deprivation 

 Principal components analysis based on the following 

variables: Median household income, percent 

homeowners, percent single-parent households (among 

households with children), and percent Black race, all at 

the census tract level.  
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Table 2. Household and multi-level models used in analysis. 

 

Model 1 

Household-level OLS 

B 

Model 2 

Neighborhood & State 

effects 

B 

Financial condition 0.0786 *** 0.0692 *** 

Housing burden 0.0229 

 

0.0503 

 Home ownership 0.2198 *** 0.2112 *** 

Car access 0.052 

 

0.0510 

 HH size -0.04 

 

-0.0383 

 Young kids in HH -0.0247 

 

-0.0360 

 Rural -0.3363 *** -0.2474 ** 

Black  -0.0036 

 

-0.0094 

 Hispanic 0.135 

 

-0.0214 

 Other non-White race 0.3573 *** 0.2681 ** 

Citizenship status -0.3445 *** -0.2961 *** 

Educational attainment 0.03 ** 0.0219 

 Stores in neighborhood 0.0104 ** 0.0103 ** 

     County food price index -- 

 

0.0020 

 Neighborhood deprivation -- 

 

-0.0186 

 
     N 3578 

 

3286 

 Adjusted R2 0.0483 

 

0.0668 

 Wald Chi2 -- 

 

206.6 *** 

State effect -- 

 

0.0078 *** 

Neighborhood effect (rho) -- 

 

0.0314 *** 

     ** = p<0.01, *** = p<0.001 
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Abstract 

The objective of the study was to determine relationship between neighborhood food 

store availability, store choice and food purchasing habits among Supplemental Nutrition 

Assistance Program (SNAP) participating households. The study sample consisted of SNAP 

households (n=1581) and low income households participating in the USDA's National 

Household Food Acquisition and Purchase Survey (FoodAPS) a nationally representative cross-

sectional survey of American households with household food purchases and acquisitions data. 

Main Outcomes: 1) Food purchasing choices (sugar-sweetened beverages, fruits and vegetables, 

snacks, water, and milk) obtained from store receipts over a one-week period; 2) food shopping 

activities was obtained from a log book of where food was purchased over a one-week period. 

Key findings indicated those SNAP households within 1 mile of a supermarket had higher odds 

of shopping at a supermarket (2.05 OR [95% CI 1.34, 3.15]) compared to those without a 

supermarket. Shopping at a supermarket was associated with greater odds of purchasing water 

and low-calorie beverages (OR 1.69 [95% CI 1.12, 2.54]) and fruits and vegetables (OR 2.50 

(95% CI 1.52, 4.11]) compared to not shopping at supermarket among SNAP households. 

Additionally, a fractional multinomial logit analysis (n=4,664) similarly found that close 

proximity to superstores or supermarkets increases the share of weekly food purchases made 

there, and that car access increases purchases made at restaurants while decreasing purchases 

made at other food shopping venues. Findings suggest that policies aiming to improve food 

purchasing habits among SNAP need to consider how to situate stores where SNAP households 

will choose to shop.  

  

mailto:ukcpr@uky.edu
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Executive summary 

Over the past several years, research has begun to examine various factors that may 

influence rates of obesity and dietary intake, especially among lower income households and 

those households participating in the Supplemental Nutrition Assistance Program (SNAP), 

formerly food stamps. Research has established key constructs related to dietary intake such as 

access to food stores, transportation, and socio-economic status, among many others. However, 

there have been mixed reviews with regard to neighborhood environmental factors with a direct 

correlation to dietary intake. It is not surprising the mix of results given that the construct of 

neighborhood environment may be a complex factor with several related variables. To these ends 

this project examined the construct of food store choice as a key factor in food purchases and 

amount spent at various food venues among SNAP households.  

In Chapter 1 of this report, the project focused on the analyzing the relationship between 

SNAP households, food store choices, and food purchasing habits. The findings indicate that 

neighborhood availability of stores influences the type of stores where SNAP households choose 

to shop. The store choice has a subsequent effect on the types of food purchased among SNAP 

households. Those who live in neighborhoods with close proximity (1 mile) to supercenters or 

supermarkets tend to shop at those stores. Shopping at these types of stores influences what is 

purchased. At supermarkets SNAP households tend to purchase lower calorie beverages and 

fruits and vegetables. Whereas at supercenters SNAP households purchase healthier food items 

but at the same they purchase sugar-sweetened beverages, snacks, and higher calorie items. The 

findings suggest that policies aiming to improve the purchasing habits among SNAP households 

may consider the types of stores that are in close proximity to SNAP households.  

In Chapter 2 of this report, the project aimed to identify and measure the relevance of 
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consumer determinants of food venue choice using a fractional multinomial logit model. Using 

the nationally representative cross-sectional data from the USDA’s National Household Food 

Acquisition and Purchase Survey (FoodAPS), we examined neighborhood food environment, 

household characteristics, and SNAP participation affected the shares of household weekly food 

expenditures made at different types of food venues—superstores, supermarkets, other FAH food 

venues, and all FAFH food venues. Using the fractional multinomial logit model enabled the 

analysis to consider shares of all food venue choices simultaneously and compare their relative 

importance for food acquisition via purchase shares.  

Average marginal effects calculated from the fractional multinomial logit results 

estimated that close proximity to a superstore or supermarket increased the share of food 

purchases made at that store type. Car access increases the share of food purchases made at food-

away-from-home (FAFH) venues and decreased the share of purchases made at food-at-home 

(FAH) venues other than a superstore or supermarket. SNAP participation also played a role, 

increasing the share of purchases at superstores and decreasing the share spent at FAFH venues, 

on average. Notably, neither income nor household size significantly impact purchase shares 

between the food venue categories. These findings suggest that both the neighborhood food 

environment, including transportation access, play a role in determining food venue choice for 

enough consumers for it to matter. While several localized studies have also found this to be true, 

this evidence is based on a nationally representative sample. In addition, SNAP participation 

affects food venue choice as well, though more research is needed to study the relationship 

between SNAP, food venue choice, food purchasing decisions and health; it may be that while 

SNAP participation leads to fewer purchases at FAFH venues, it may also negatively affect food 

purchasing decisions at FAH venues, and it is unclear whether this trade-off results in better or 
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worse health outcomes relative to SNAP-eligible-not-receiving households. 

 

CHAPTER 1: Logistic Analysis Relating Neighborhood Food Availability to Food Store 

and Purchasing Choices  

Introduction 

In recent years the role of the food environment has been suggested to be a key 

determinant in diet and obesity rates 1. Distal determinants (upstream causes) particularly the 

availability of food venues (grocery stores, farmers' markets) surrounding a home 2-6 are thought 

to play a key role in dietary intake and obesity rates. In part due to the complexity of measuring 

the neighborhood food environment, studies reveal mixed results regarding   the relationship 

between availability of food venues and diet and obesity status among various sub-populations 7-

14. One limiting factor of studies exploring availability is the lack of attention to the potentially 

mediating variable of store choice 15-17. Research has suggested that the type and number of 

stores in a neighborhood may influence the type of stores residents choose to shop in, which in 

turn influence what is purchased and consumed 16,18. In a recent study, qualitative findings point 

to individuals adapting their personal shopping choices to meet financial needs. Shoppers in this 

urban setting choose stores to avoid violence and crime, while also choosing stores based on 

convenience 17,19 and not necessarily closest to home 17. Additional work has demonstrated that 

individuals typically choose stores which reflect their racial and economic profile 19. While these 

studies provide insight into distinct urban populations, there remains limited understanding of 

how low income residents across the United States make food shopping choices and food 

purchases based on their neighborhood. 

A sub population most affected by neighborhood access is lower income households are 

those participating in the Supplemental Nutrition Assistance Program (SNAP, formerly Food 

Stamps). Households participating in SNAP may be disproportionally impacted by both the 
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neighborhood food environment and factors affecting individual store choice 20. Several studies 

have reported that low-income households and those participating in SNAP have less access to 

grocery stores and stores selling healthier food items 20-22. For example, households participating 

in SNAP often are living in neighborhoods with limited access to stores selling high quality and 

low priced healthy food items. SNAP households of differing racial and rural composition report 

residing in areas with limited access to stores accepting SNAP benefits23. SNAP households may 

live in food deserts and those that do have access to grocery stores may still choose to shop in 

neighborhood other than their own. 

Additionally, many SNAP households are faced with challenges such as transportation 

and traveling to stores which accept EBT cards, posing limitations on store choice and thus 

purchasing habits. A recent study has pointed to SNAP households in lower income 

neighborhoods spending a large proportion of their benefits in medium size grocery stores 24, but 

several studies have also suggested that SNAP households shop outside their neighborhood for 

food a majority of the time 20,24,25. The type of food venue SNAP households choose to shop in 

may be a reflection of their neighborhood but also the unique role that the actual SNAP benefits 

influences on the overall comfort that SNAP household members feel at stores 26 and acceptance 

of electronic benefit transfer (EBT) 27.  

Existing research is limited by focusing only on food venue availability within a 

neighborhood and not expanding on how availability may influence store choice and purchasing 

habits. This study takes advantage of a unique data set, the FoodAPS data from United States 

Department of Agriculture(USDA), to examine multiple environmental influences of diet and 

obesity among SNAP participating households. The aims of the study are to determine the 

association between 1) neighborhood food store availability and the outcome of primary food 
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store choice; 2) neighborhood food store availability and the outcome of types of food 

purchased; and 3) primary food store choice and the outcome of types of food purchase. For each 

of these comparisons, we examine SNAP Participating households.  

Conceptual model 

The figure depicts the relationship between neighborhood food availability, food store 

shopping choices, and food purchasing choices. Neighborhood food availability both proximally 

and distally (via food store shopping choices) affects food purchasing choices. The study aims to 

examine the relationships depicted here as a way to better understand food purchasing choices.  

 

 

Data 

Dataset - USDA's National Household Food Acquisition and Purchase Survey 

(FoodAPS) is the first nationally representative survey of American households to collect 

detailed and comprehensive data about household food purchases and acquisitions. Detailed 

information was collected about foods purchased or otherwise acquired for consumption at home 

Food purchasing choices

Food Store Shopping Choices 
- where households shopped 

for food over a one-week 
period "food shopping 

activities"

Neighborhood Food 
Availability - Number and 

type of food venues within 1, 
5, and 10 miles of SNAP 

residents home
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and away from home. The survey includes nationally representative data from 4,826 households, 

including Supplemental Nutrition Assistance Program (SNAP) households, low-income 

households not participating in SNAP, and higher income households.  

Survey - The primary respondent (PR) was identified as the primary food shopper for the 

household. The PR completed 2 in-person interviews and 3 brief telephone interviews. All 

household members were also asked to track and report food acquisitions during a 1-week 

period; scan barcodes on food products; save their store receipts; and write information in a food 

book. For a detailed description of the methods see http://www.ers.usda.gov/data-

products/foodaps-national-household-food-acquisition-and-purchase-survey/documentation.aspx. 

Sample - From the survey question asking "Has anyone in your household received 

SNAP in the past year" the SNAP variable was created with verification of date last received 

with state-level enrollment files for March through November 2012 (n= 1581). There may be 

endogeniety of those selecting into SNAP being different compared to other eligible households 

that select to not participate in SNAP which could influence store choice. Therefore, we tested 

several instrumental variables such as county level poverty index or median household income at 

the county level and did not find that an IV approach worked for modeling endogeneity. Thus we 

included covariates that conceptually would be related to selecting into SNAP and be associated 

with store choice.  

Methods 

Independent variables 

Neighborhood Availability of Food Venues - The first independent variable was 

availability of food venues within 1 , 2, and 10 miles of the home. These distances were chosen 

based on the average miles from home SNAP households live from various food venues (see 
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Table 1). This variable was categorized as a binary variable, indicated whether each type of food 

store was present in the neighborhood surrounding each SNAP household for each mile buffer. 

The binary variable for each store type was coded as either the household did not have this store 

type within a 1, 2, and 10-mile radius of their homes (coded as "0") or they did have this store 

type within a 1,2, or 10-mile radius of their homse (coded as "1"). The following types of food 

venues were used: 1) supermarkets (greater than 50 employees but sells primarily food); 2) 

supercenters (greater than 50 employees and sells food plus a significant amount of other items 

such as clothes, automotive, household, furniture); 3) convenience stores; 4) combination 

grocery stores (i.e. food is sold as well as prepared food items and household goods); and 5) 

medium and large grocery stores (less than 50 employees). This information about the presence 

of each type of store within the geographic radius was derived from several steps, described 

below. First, each household was geocoded based on the latitude and longitude of FoodAPS 

households provided by Mathematica Policy Research. Then the USDA Economic Research 

Service (ERS) created point locations for the households. Block group, tract, county, and state 

FIPS code identifiers for both the 2000 and 2010 census geographies for the household points 

were obtained by using point-in-polygon geospatial analysis to identify in which 2000 and 2010 

TIGER block group polygons each household was located. Data from the FoodAPS Geography 

component are based on 2010 census geographies. Second, the categorization of the food stores 

used the STARS dataset. The STARS system classifies stores into types. The types of stores are 

categorized based on industry standards. Place names were standardized through matching to the 

STARS database and then through a manual review and then a final place category and place 

type were assigned based on information from STARS, InfoUSA, Google, and keywords in the 

place names. 
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Dependent variables 

Our first set of models examined the odds of shopping at a particular food venue during 

the week of data collection "food shopping activity". The second set of models assessed the 

relationship between neighborhood availability and store choice on foods purchased. These 

variables are described in detail below. 

The variable “Food shopping activity” was derived from participants keeping a log of all 

the locations they purchased food for the home in one week. The following categories were used 

for the type of food venues the PR had their food shopping events at during the 1-week period: 1) 

supermarkets; 2) supercenters; 3) medium/large grocery stores; 4) combination grocery (grocery 

store plus retail such as clothing); and 5) dollar stores/convenience/gas stations labeled 

"convenience". These "food shopping activities" were categorized based on the type of food 

venue the PR purchased food from. There are 5 separate models for each type of food shopping 

activity. A binary variable was created to indicate if the PR shopped at this type of store (coded 

as "0" for not shopping at this store type and "1" for shopping at this type of store) over the one-

week recorded period.  

Our second set of models examines food purchases as the primary outcome. Food 

purchases were grouped in to the following categories 1) sugar-sweetened beverages (full calorie 

soda; sports drinks); 2) milk (including whole, skim, flavored); 3) low-calorie beverages and 

water; 4) juice including 100% fruit juice; 5) produce (fresh and frozen fruits and vegetables); 6) 

snacks (chocolate, candy, chips, pretzels). Cereal and breads were omitted since they could not 

be separated for sugar or fiber content, meats were omitted since they could not be separated for 

fat content. For each food category a binary variable was created if the household purchased the 

food category or if they did not purchase the food category during the one-week period (coded as 
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"0" for not purchasing the food category and "1" if they did purchase the food category). These 

groups are not mutually exclusive, such that a household can purchase snacks and milk in the 

same one-week period. There are 5 different models assessing the odds of purchasing these food 

categories. These food purchases for home (FAH) were collected using three methods: 1) survey 

booklets complemented with telephone calls, 2) hand-held scanners, and 3) post-survey 

processing of saved receipts. Respondents were asked to record all acquisitions on the Daily List 

in the Primary Respondent's Book. PRs were asked to fill out a corresponding detailed page for 

each acquisition on pages which asked for details such as location, date, and payment types. PRs 

were asked to scan items purchased using the hand-held scanner and record details about items 

that could not be scanned. They also were asked to attach the receipt. On days 2, 5, and 7 of the 

reporting week, PRs were asked to report all acquisitions that had been written on the Daily List. 

For FAH purchases, the telephone interviews collected information on the Daily List as well as 

supplementary information about any problems respondents had in using the hand-held scanner. 

At this time, respondents were reminded to save their receipts.  

To capture each FAH purchase at the item level there was coalescing of information from 

the Food Books, telephone interviews, scanners, and receipts by USDA. There was matching to 

phone reported events through a double entry process, where a second data entry person resolved 

any inconsistencies. Items that were scanned or written were matched to receipts, and prices 

were assigned using the receipts information. In addition, item descriptions were updated using 

receipt information if the description from the scanned barcode or written information was 

limited or incomplete. Lastly, the categorization of the food purchases was matched to the isle.  

Co-variates 

Several key variables were collected to examine food shopping and neighborhood food 
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venue availability. These include car ownership, primary reasons for choosing their primary store 

(prices of food, quality of food, location to home, good produce), household size, family size (the 

number of individuals who met the criteria for qualifying as being a legal relationship to the 

primary respondent), and household income (derived from asking the PR the household income 

including all assets). Additionally, distance from the respondent’s home to each type of food 

store type (supercenter; supermarket; combination grocery; convenience; medium/large grocery) 

was used. Distance measures were obtained using Google Maps and the household's and place's 

geocoded addresses where the respondent acquired food. Lastly, to understand the differences 

between rural and urban counties interaction terms were tested to see if there was an effect. The 

interaction term was not significant but was retained in the model as cofounder, labeled as rural 

for census tract being in a rural area. All these covariates were included in the models below.  

Analyses 

To examine the association between neighborhood availability and food shopping 

activities a logistic model was used, controlling for car ownership, household size, distance to 

store type that corresponded to neighborhood availability of that store (i.e. distance to 

supercenter in the model examining neighborhood availability of supercenter), rural county 

designation, and household income. In all other analyses logistic regression was used while 

controlling for the same covariates in the logistic model. All models used survey commands to 

account for clustering of households at the neighborhood level using primary sampling units. 

Taylor estimation was used for robust standard errors. All analyses was done using Stata 14.0 28.  

Results 

The demographic characteristics of the SNAP sample are presented in Table 1.  SNAP 

households reported 90% as English being the primary language, 60% owning a car, and 25% 
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living in a rural census tract. SNAP households lived on average 3.2 miles away from a 

supercenter and 2.65 miles away from a supermarket, with an average travel time of 11.36 

minutes to their primary food store. The distribution of stores visited during the week “food 

shopping activity” by SNAP participants indicates that a high percentage shop at supercenters 

(37%) followed by supermarkets (32%). Lastly, in regard to purchasing choices among SNAP 

households during a one-week period 62% bought sugar-sweetened, while 85% purchased fruits 

and vegetables.  

Associations between food shopping events and food purchases (Table 4) 

Supercenter Food Shopping - shopping at a supercenter was associated with greater odds 

of purchasing all food categories from any food venue over a one-week period.  

Supermarket Food Shopping - shopping at a supermarket was associated with greater odds of 

purchasing water and low-calorie beverages (OR 1.69 [95% CI 1.12, 2.54]) and fruits and 

vegetables (OR 2.50 (95% CI 1.52, 4.11]). There is a similar relationship with medium/large 

grocery store shopping as well. 

Convenience Store Food Shopping - shopping at a convenience store was associated with 

lower odds of purchasing any fruits and vegetables (.31 OR [95% CI .17-1.76) and water or low 

calorie beverage (.30 OR [95% CI .11, 1.76]) from any store type over a one-week period 

compared to those never shopping at a convenience store.   

Discussion 

This study is one of the first to utilize a comprehensive dataset examining purchasing 

habits at the individual level, which helps elucidate the relationship between neighborhood food 

availability, shopping activity, and purchasing habits. The relationships described here are meant 

to be descriptive only, and do not suggest that SNAP itself is driving these store choice and 
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purchasing decisions. But rather, there are distinct behavioral choices that SNAP households 

make which may to a greater or lesser degree be influenced by the neighborhoods they reside in.  

First, neighborhood availability of stores was associated with the type of stores that SNAP 

household members choose to shop in over a one-week period. These data demonstrate that 

neighborhood availability of food stores with a supercenter have higher odds of shopping at a 

supercenter compared to those without a supercenter within 1 mile of their home and this food 

store choice is associated with higher odds of purchasing all food types. Although we find that 

healthy foods are being purchased at these venues, the result suggests that less healthy foods are 

being purchased at the same time. These results are situated within a growing body of research 

finding that neighborhoods with high access to supercenters is associated with higher body mass 

index (BMI) 29,30. There is some suggestion that the behavior of shopping at supercenters is 

related to shopping once a month among SNAP household and buying foods in bulk that will last 

25,31. This type of shopping behavior and choice may lead to lower odds of  purchasing healthier 

items such as milk and instead purchasing more shelf-stable items such as high calorie snack 

items 32. The ability to make these links elucidates how neighborhood influences choice and thus 

what is purchased based on the type of food venue. These results are not suggesting that 

supercenters cause poor food purchases or obesity, but rather this result is one example of many 

complicated pathways which helps to explore the role of the food environment among low 

income and SNAP households. 

A second key insight is found in the unique role that supermarket availability and 

shopping activity at this venue has among SNAP households. Among SNAP households, 

proximity to a supermarket (living within 1 mile) was associated with choosing to shop at this 

venue. While, living farther away from a supermarket was associated with choosing to shop at a 
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convenience store or medium/large grocery store. Previous literature has suggested that access to 

supermarkets may be a piece in improving healthful diet 33 and lower odds of obesity 5,14,34. 

Given, that although supermarkets carry a variety of unhealthy items they also stock a variety of 

healthy items at fair prices 35. Conversely, others have found that the food available in SNAP 

authorized convenience store retailers carry a low variety of healthy food options 36. Our results 

suggest that those choosing to shop at a supermarket or medium/large grocery store purchased 

fruits and vegetables and water. Since our analyses did adjust for living in a rural community the 

findings can suggest that regardless of rural or urban neighborhoods living farther away from 

stores may influence the type of store SNAP households choose to shop in and thus the types of 

food purchased. We are not suggesting the proximity is the only factor in store choice but rather 

that when policies are addressing improving food access for vulnerable populations addressing 

restructuring of the environment (such as moving stores where SNAP residents reside) or 

providing tax incentives such as transportation vouchers for those living farther away from stores 

37, may be an effective strategy for improving diets 38.  

Lastly, the lack of a strong direct association between neighborhood availability with 

food purchases among many of the food categories is similar to findings from previous studies 

39,40. This finding is not surprising given the many determinants (social, economic, physiological) 

along the pathway between neighborhood food store availability and purchasing habits. The lack 

of findings reinforces previous findings indicating the need for precise and accurate measures of 

the food environment, such as store choice 41,42. 

There are several important limitations of this study that need to be addressed. Although 

the USDA FoodAPS data is the most extensive collection of food purchasing acquisitions to 

date, the data collection period was only over a one-week time period. While this one-week 
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period may not reflect all the food purchases in a given month, the highly detailed data provided 

compensates somewhat for the limited time period covered. Extensive efforts were taken with 

collection of receipts however it is always possible that some food was not recorded in the food 

book or through the scanners. As with any self-report survey there can be over or under 

reporting. The neighborhood boundaries do not necessarily reflect each household’s true 

operational neighborhood and thus these are investigator defined boundaries. While the 1, 5 and 

10-mile radius was used, it does not account for ease of transport such as traffic patterns, barriers 

to walking, and other traffic pattern measures. 

The implications of these finding points to the importance of not simply measuring the 

neighborhood food environment but taking a more nuanced approach to understanding the 

intricacies between neighborhood availability, store choice, and purchasing habits. Additionally, 

among lower income households those participating in SNAP may have unobserved 

characteristics that influence their food shopping and purchasing characteristics. Future studies 

among SNAP households may want to consider the in store contents of where SNAP households 

shop as just as vital as improving availability within neighborhoods. Lastly, policies are needed 

which address improving access to different food store types for SNAP households, which may 

help to improve health outcomes through the role of improved food purchases. 

There are several important limitations of this study that need to be addressed. Although 

the USDA FoodAPS data is the most extensive collection of food purchasing acquisitions to 

date, the data collection period was only over a one-week time period. While this one-week 

period may not reflect all the food purchases in a given month, the highly detailed data provided 

compensates somewhat for the limited time period covered. Extensive efforts were taken with 

collection of receipts however it is always possible that some food was not recorded in the food 
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book or through the scanners. As with any self-report survey there can be over or under 

reporting. The neighborhood boundaries do not necessarily reflect each household’s true 

operational neighborhood and thus these are investigator defined boundaries. While the 1-mile 

radius was used, it does not account for ease of transport such as traffic patterns, barriers to 

walking, and other traffic pattern measures. 

Conclusion 

The implications of these finding points to the importance of not simply measuring the 

neighborhood food environment but taking a more nuanced approach to understanding the 

intricacies between neighborhood availability, store choice, and purchasing habits. Additionally, 

among lower income households those participating in SNAP may have unobserved 

characteristics that influence their food shopping and purchasing characteristics. Future studies 

among SNAP households may want to consider the in store contents of where SNAP households 

shop as just as vital as improving availability within neighborhoods. 
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Table 1. Descriptives of neighborhood, food store choice, and purchasing habits among SNAP 

households, USDA FoodAps 2012 SNAP (n=1581) 

    

  mean (SE)/percentage   

Family Size   2.78 (.09)    

Household Size   3.10 (.09)    

English as primary language  90%    

Household Receiving USDA food from local program 90%    

Car Ownership   60%    

Residing in rural census tract  25%    

 

Perception of Household Diet     

Excellent  5%    

Very Good  18%    

Good    44%    

Fair  20%    

Poor  4%    

 

Reasons for Not Buying Healthy Food (% Agree)     

Costs too much  47%    

Too busy to prepare food  19%    

Household doesn't think healthy food tastes good 26%    

Family is eating enough healthy food  37%    

 

Primary shopper reports eating right amount of F/V    

Eat right amount  23%    

Eat More  77%    

Eat Less  <1%    

 

Reads the Nutrition Facts Panel     

Always  12%    

Most of the time  15%    

Sometimes  30%    

Rarely  13%    

Never  28%    

Never seen panel  1%    

 

Distance to Food Venues in Neighborhood (miles)     

Super Center  3.20 (.61)    

Super Market  2.65 (.67)    

Convenience Store  1.14 (.17)    

Grocery Store  3.89 (.68)    
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Shopping Characteristics     

Travel Time to primary store self-report (minutes) 11.36 minutes    

Travel Cost to store (self-report)   $2.79     

 

Neighborhood Characteristics      

No SNAP retailers in .25 miles  53%    

No SNAP retailers in .50 miles  30%    

No SNAP retailers in 1 mile  16%    

No Super Center in .5 miles  80%    

No Super Center in 1 mile  55%    

No Super Market in .5 mile  79%    

No Super Market in 1 mile  49%    

 

Primary Store (Self-Report)     

Super Center  49%    

Super Market  48%    

Reasons for Primary Store     

Low Prices  61%    

Good Produce  12%    

Good Quality  16%    

Close to where I live  47%    

Shopping Choices 1-week period     

Super Center  37%    

Super Market  32%    

Convenience  8%    

Grocery  4%    

Farmers Market  3%    

Other (Dollar, Club)  1%    

 

Distance to Shopping Choices (1-week period)     

Place distance  5.25 (.61)    

Location accepted SNAP/EBT  87%    

 

Food Buying Choices (1-week period)     

Sugar-sweetened beverages  62%    

Milk  54%    

Water/Low-Calorie Beverages  21%    

Juice  23%    

Fruits and Vegetable  85%    

Snacks and Candy  73%    
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Associations between neighborhood food store availability and food shopping activities (Table 2) 

Supermarket Availability - if a supermarket was within 1 mile of the home there was lower odds of 

shopping at supercenter (.36 OR [95% CI .22, .60]) compared to not having a supermarket within 1 mile. 

Those living within 1 mile of a supermarket had higher odds of shopping at a supermarket (2.05 OR [95% 

CI 1.34, 3.15]) compared to those without a supermarket within 1 mile. Of note, is that as supermarkets 

are farther away from a SNAP households the odds of shopping at a convenience store or combination 

grocery store increase. Such that, those with a supermarket 10 miles away report higher odds of shopping 

at a convenience store during the week (OR 3.57 [95% CI 2.24, 5.25]) and a combination store (OR 1.19 

[95% CI 1.82, 2.79]).  

Supercenter Availability - if a supercenter was within 1 mile there was higher odds of shopping at this 

venue (2.61 OR [95% CI 1.41, 4.79]) and less likely to shop at a supermarket (.44 OR [95% CI .26, 

.72])compared to those without a supercenter within 1 mile of the home. These relationships are not seen 

as stores are farther away from the SNAP household. 

Medium/Large grocery store Availability - if a grocery store is within 5 miles or 10 miles there was 

higher odds of shopping at this venue (OR 3.97 [95% CI 1.81, 8.67]) and (OR 3.47 [95% CI 1.38, 8.74]). 

This result highlights the possible link between proximity of stores in a neighborhood and store choic
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Table 2. Odds Ratio of food shopping activities over one-week  in relation to the type of food stores within a 1, 5, and 10 mile buffer of the 

household among SNAP households, USDA FoodAps 2012   

 Food Shopping Activities over a one-week period  

Food Venues (1 mile buffer) Supercenter Supermarket Grocery Convenience 

Supermarkets    .36 (.22, .60)* 2.05 (1.34, 3.15)* .77 (.50, 1.19) 1.45 (.74, 2.84)     

Super Centers   2.61 (1.41, 4.79)* .44 (.26, .72)* 1.53 (.81, 2.91) .85 (.55, 1.31)     

Grocery Stores  1.14 (.75, 1.75) .64 (.42, 1.00) 1.83 (.85, 3.98) .76 (.41, 1.43)     

Convenience Stores 1.05 (.65, 1.75 .86 (.52, 1.43) .45 (.20, 1.01) 1.33 (.54, 3.28)     

Combination Grocery .82 (.50, 1.36) 1.05 (.60, 1.87) 1.54 (.64, 3.72) .93 (.38, 2.26)       

         

Food Venues (5 mile buffer)        

Supermarkets    .67 (.36, 1.26) 1.97 (.96, 4.05) .86 (.37, 1.98) .82 (.35, 1.91) 

Super Centers   1.25 (.79, 1.92) 1.56 (.81, 2.98) .90 (.43, 1.87) .99 (.44, 2.21)    

Grocery Stores 1.17 (.76, 1.81)                  1.16 (.71, 1.92) 3.97 (1.81, 8.67)* .76 (.47, 1.21) 

Convenience Stores 1.81 (.62, 5.31) 1.03 (.28, 3.76) .57 (.15, 2.26) 1.74 (.33, 1.92)    

Combination Grocery .75 (.35, 1.61) 1.69 (.76, 3.78) 1.65 (.31, 4.36) 1.02 (.41, 2.58)      

          

Food Venues (10 mile buffer)        

Supermarkets    .58 (.19, 1.76) 4.30 (.97, 1.91) .62 (.23, 1.61) 1.60 (.23, 1.32)    

Super Centers   1.49 (.91, 2.45) 2.33 (.93, 5.82) 1.01 (.42, 2.43) 1.55 (.47, 5.11)    

Grocery Stores  1.16 (.60, 2.22) 1.02 (.57, 1.81) 3.47 (1.38, 8.74)* .95 (.51, 1.79)    

Convenience Stores .25 (.02, 3.75) 3.57 (2.24, 5.25)* .46 (.04, 6.17) .98 (.45, 1.32)    

Combination Grocery .34 (.05, 2.37) 1.19 (1.82, 2.79)* .97 (.14, 6.66) .63 (.08, 5.29)    

logistic regression model adjusted for household income, distance to store, household size, car ownership, rural census tract designation    

* p<.05           

          

 

Associations between neighborhood food availability and food purchases 

There were no statistically significant food purchasing associations found between neighborhood food 

store availability and types of food purchased (Table 3).  

 

Table 3. Odds of purchasing food categories when different types of food venues are within 1 mile of residence  among SNAP 

participating  households, USDA FoodAps 2012   

   Food Category Purchases during a one-week period    

Food Venues (1 mile buffer) SSB Milk Water/Low-Calorie Juice                     Fruit/Vegetable     Snack   

Supermarkets   .99 (.66, 1.46) .63 (.38, 1.03) 1.08 (.68, 1.72) 1.01 (.65, 1.60)    .79 (.50, 1.25)      .75 (.52, 1.07) 

Super Centers  .89 (.59, 1.34) .85 (.60, 1.22) 1.19 (.74, 1.92) .99 (.66, 1.49)      .76 (.47, 1.25)      .76 (.51, 1.13) 

Grocery Stores .92 (.60, 1.42) .95 (.64, 1.42) .72 (.49, 1.07) .97 (.69, 1.36)      1.45 (.85, 2.47)    .84 (.53, 1.34) 

Convenience Stores .98 (.62, 1.55) .81 (.46, 1.42) 1.53 (.98, 2.36) 1.09 (.62, 1.92)    .76 (.40, 1.46)      .77 (.42, 1.41) 

Combination Grocery 1.10 (.66, 1.83) 1.24 (.78, 1.98) .98 (.62, 1.57) .99 (.64, 1.53)      .81 (.45, 1.45)       .83 (.53, 1.30) 

       

logistic model adjusted for household income,  household size, car ownership, rural residence   

5 separate models predicting how neighborhood availability is associated with food purchase categories  

  similar results were found for 5 and 10 mile buffer 
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Table 4. Odds of purchasing certain foods when shopping at various food venues over a 1-week period among SNAP, USDA FoodAps 

2012  

 

  SNAP participating Households 

   

Food Shopping  

Activities 1-week period SSB Milk Water/Low  Juice Fruit/Vegetable Snack 

   Calorie Beverages 

Super Center 1.60 (1.06, 2.41)* 1.92 (1.36, 2.68)* 2.01 (1.27, 3.16)* 2.31 (1.24, 4.30)* 2.11 (1.36, 3.28)* 2.23 (1.55, 3.19)* 

Super Market 1.22 (.82, 1.83) 1.30 (.84, 2.03) 1.69 (1.12, 2.54)* 1.12 (.59, 2.12) 2.50 (1.52, 4.11)* 1.44 (.94, 2.23) 

Convenience 1.59 (1.02, 2.49)* .66 (.34, 1.27) 1.39 (.87, 2.22) .57 (.31, 1.05) .57 (.32, 1.00)* 1.04 (.63, 1.71) 

Grocery 1.93 (1.06, 3.51)* .71 (.32, 1.60) .85 (.48, 1.53) .82 (.43, 1.60) 2.92 (1.36, 6.31)* .77 (.38, 1.55) 

logistic model adjusted for hhsize, income, distance to store, car ownership, rural designation census tract     

p<.05  
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CHAPTER 2: Fractional Multinomial Logit Analysis on Shares of Household Weekly Food 

Purchases at Different Food Venues 

Introduction 

The Centers for Disease Control and Prevention (CDC) identifies poor nutrition as one of 

four health risk behaviors that cause much of the illness related to chronic diseases and 

conditions (e.g., obesity, diabetes, heart disease), which collectively are the leading causes of 

death and disability in the United States.1 While unhealthy food consumption may directly lead 

to adverse health outcomes, a considerable amount of research also looks at how proximal access 

to food venues (i.e., the neighborhood food environment) affects food consumption, thereby 

indirectly affecting the impact of chronic diseases and conditions. Such research tends to focus 

on obesity as the primary adverse health outcome,2-6 but findings have been mixed in regards to 

how the neighborhood food environment affects diet and obesity.7-13 In fact, a systematic review 

of 71 studies in this literature found limited evidence for correlations between local food 

environments and obesity.14 Faced with a similar task in a systematic review of local food 

environment interventions, one recent review starts by asking not simply what works and what 

does not, but rather for whom and under what circumstances does a change in food availability 

influence diet.15 This framework accepts that because the role of a food environment in 

determining food intake is circumstantial, there may be a more generalized model to food 

acquisition behavior.  

Taking a step back, some studies have examined the determinants and impact of food 

venue choice (i.e., where does a consumer choose to acquire food).16-18 For example, a 2011 

study of Kentucky adults found that food venue choice was significantly correlated with dietary 

intake relative to food venue availability. This paper also acknowledges that while understanding 

food venue exposure along regular travel patterns is important, we must also understand if and 
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how food venue choice influences travel patterns, and moreover, if decisions to shop in a 

disadvantaged neighborhood may be more a function of socio-economic status and transportation 

than the neighborhood food environment per se.19 This and related studies research 

neighborhood food environments by asking the broader questions: What factors affects food 

venue choice? And then, how does food venue choice affect dietary intake and health outcomes? 

The present research objective addresses the former question by studying the determinants of 

food venue choice using robust data from the United States Department of Agriculture's (USDA) 

National Household Food Acquisition and Purchase Survey (FoodAPS), a nationally 

representative survey of 4,826 American households containing detailed information on 

household food purchases and acquisitions. Based on a review of the literature, our conceptual 

model hypothesizes that food venue choice is associated with SNAP participation and eligibility, 

neighborhood environment, and household socioeconomic characteristics. 

The challenge in modeling food venue choice is that consumers often choose more than 

one food venue from which to acquire their food. For example, within any given week, a 

household may choose to purchase half of its food from a grocery store, a quarter from a 

convenience store, and another quarter from fast food restaurants. Therefore, our analysis will 

use a fractional multinomial logit econometric model to estimate the effect of explanatory 

variables on shares of weekly food purchases made at several types of stores simultaneously. By 

modeling shares of food purchases made at store types as outcome variables, we avoid the risk of 

a simultaneity bias associated with including store choice as an explanatory variable. Thus, the 

estimates will contribute to the literature on store choice where the analytical focus on a single 

store type in an environment with several types of stores oversimplifies the household’s food 

purchasing decisions. Using the coefficients generated from the fractional multinomial logit, we 
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will calculate average marginal effects to present how the explanatory variables affect store 

choices within a household.  

Literature review 

Where we acquire our food affects which foods we acquire; this food acquisition closely 

relates to which foods we consume; and food consumption impacts human health. What remains 

undecided is: how do consumers decide where to acquire their food? A qualitative analysis of 

interviews of primary household food shoppers identified four main factors: proximity to home 

and work, financial considerations, produce and meat availability and quality, and store 

characteristics.17 The literature informs a conceptual framework used to model food venue 

choice.  

First, as discussed in the introduction, a model of food venue choice must consider the 

consumer’s neighborhood food environment. However, the assumption that consumers shop near 

their residence (i.e., their neighborhood food environment) is increasing questioned.16 For 

example, a study of two low-income urban food deserts found little correlation between the 

nearest supermarkets and the type of store where residents chose to do their shopping. However, 

store choice was correlated with BMI, supporting that there is a link between store choice and 

human health.20 While a model should allow for travel patterns to be influenced by food venue 

choice, it is also true that research on food venue exposure along normal travel routes is 

needed.19 Due to these dissenting viewpoints, our model conceptualizes the neighborhood food 

environment via two of its components—proximity to store and access to transportation—

recognizing this as a reduced characterization. 

There is also a growing body of research that finds that it is not the absolute number, but 

the relative density (proportion) of certain food venue types in the neighborhood food 
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environment that affects food venue choice.21-25 For example, one study that a higher ratio of 

grocery stores and produce vendors relative to fast-food restaurants and convenience stores 

decreases the odds of obesity.22 Additionally, a more recent study found that proximity to a high 

volume of fast-food restaurants had a much larger effect on body weight if they were the 

predominant restaurant type in the area, suggesting that consumers were impacted not so much 

by the absolute number of fast-food restaurants but more by the lack of alternative dining 

options.21 The same may be true for food-at-home venues.  

Secondly, evidence suggests that store choice is likely influenced by household 

characteristics, including members’ income and education and overall household size and 

transportation options. For example, a study of rural households found that those with a grade-

school education reported relatively limited access to produce and acquiring food at convenience 

stores and buffets more frequently, perhaps as a result of a lower income.9 Other studies have 

found correlations between store choice and education18 and income. Another study found that 

while distance travelled to a household’s preferred food shopping venue did not significantly 

vary by race or socioeconomic status, socioeconomic differences did affect the mode of 

transportation.16  

Third, SNAP participation may affect food venue choice. Already, evidence suggests that 

SNAP and non-SNAP households of similar economic backgrounds have dissimilar dietary 

intake; SNAP recipients are more likely to consume sugar-sweetened beverages, red meat, 

potatoes and less likely to consume whole grains26-29. One way SNAP participation may affect 

food venue choice stems from the fact that SNAP benefits can only be used to purchase specific 

items, which may be more or less available at venues. Households with time constraints may 

prefer larger stores where they can conveniently use all of their SNAP benefits in one trip. 
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Additionally, SNAP-recipient consumers may prefer food venues where electronic benefit 

transfer (EBT) is accepted and use of SNAP is not shunned.30 However, there is also a possible 

confounding relationship between SNAP participation and the neighborhood food environment 

regarding their effect on food venue choice.26 Thus, it is critical that both factors are controlled 

for in our analysis to tease out the different effect on food venue choice. 

Conceptual Model 

Based on the literature review, we hypothesize that food venue choice is a determinant of 

neighborhood environment, household socioeconomic characteristics, and SNAP participation, 

recognizing that these factors are not necessarily independent from each other.  

 
 

Figure 1: Consumer Determinants of Food Venue Choice 

Figure 1 depicts a rudimentary illustration of the model. For any given household, the 

neighborhood food environment and household characteristics are related. Moreover, both 

factors may affect SNAP participation; certain household characteristics are required to be SNAP 

eligible and the neighborhood food environment (e.g., proximity to stores accepting EBT) will 

affect the decision to participate. All three factors help determine food venue choice. The final 

arrow reminds that food venue choice itself determines food acquisition and, by extension, food 

consumption and health outcomes, though testing this part of the theory is beyond the scope of 

Neighborhood 
food 

environment

Household 
characteristics

SNAP 
participation

Food venue 
choice
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this study.  

Two factors absent from Figure 1 are those producer determinants of food venue choice. 

Of the four main factors identified by primary food shoppers, two were consumer determinants 

(proximity to home and work and financial considerations), and two were producer determinants 

(produce and meat availability and quality, and store characteristics).17 Please note that our 

model and subsequent analysis focus on consumer determinants due to limitations posed by the 

econometric methodology. 

Data 

The data come from USDA's National Household Food Acquisition and Purchase Survey 

(FoodAPS), a survey of 4,826 American households containing detailed information on 

household food acquisitions. The stratified random sampling strategy used for FoodAPS was 

designed to be nationally representative for SNAP households, low-income households not 

participating in SNAP, and higher income households, making it ideal for exploring the 

relationship between SNAP participation, the neighborhood food environment and store choice. 

Within each household, data were collected for foods purchased or otherwise acquired for 

consumption at home and away from home, including foods acquired through assistance 

programs. Specifically, members of participating households were asked to keep daily records of 

food acquisitions over a one-week period using barcodes and store receipts. For each food 

acquisition event, participants were asked to report where the food was purchased and the total 

amount paid, among other things. To improve reliability, acquisition and purchase data was 

relayed over the phone by the primary food shopper and then later checked using the records 

contained in each member’s food book. Additionally, the household’s primary food shopper 

completed two in-person interviews and three brief telephone interviews to gather information 
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about household characteristics. For a more detailed description of the methods, or to learn more 

about other data collected, see information on USDA’s FoodAPS website.31 

Methods 

Fractional Multinomial Logit Model 

The fractional multinomial logit was developed in 2002,32 and has been described and 

applied by a few others.33-35 The technique combines two variations on the standard logit model: 

the fractional logit and the multinomial logit. The consequence is a model where the explained 

variable y is able to represent the different shares of various types of y, all of which sum to one, 

much like the various categories in a pie chart. For this reason, the model is in the family of 

multivariate fractional logit models, because it is measuring the changes in shares of multiple 

variables simultaneously as a result of some explanatory variables.36 In other words, it allows 

one to ask how the slices of a pie chart change between observations as a result of differences in 

a certain set of related factors. In this analysis, the whole pie chart is a household’s total weekly 

food expenditures, meaning that the fractional multinomial logit model can help to see how 

changes in household characteristics affect the share of weekly expenditures spent at different 

types of stores and locations.  

Combining some main elements of the fractional logit and the multinomial logit models 

to come up with the fractional multinomial logit model is fairly straightforward. The fractional 

logit model differs from the standard logit model as it treats the dependent variable as an 

expected value defined by an interval rather than a response probability.37 Similarly, the 

fractional multinomial logit model must ensure that the expected share of any outcome j lies 

between parameters A and B and that the sum of shares for all outcomes sums to unity. 

Mathematically,  
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 𝐴 ≤ 𝐸(𝑆𝑗|𝑥) ≤ 𝐵, 𝑗 = 0, 1, 2, … , 𝐽, where 𝐴 = 0 and 𝐵 = 1. (1) 

 

∑ 𝐸(𝑆𝑗|𝑥)

𝐽

𝑗=0

= 1 (2) 

This technique permits the evaluation of shares of an outcome rather than the probability of 

whether or not the outcome occurred. 

The multinomial logit describes a technique for comparing the response probabilities for 

several categorical variables through use of a pivot outcome, which is the difference between one 

and the sum of expected shares for all other outcomes. Likewise, the fractional multinomial logit 

model defines a pivot outcome as well, but again, its dependent variables are fractional 

outcomes, not response probabilities. Defining 𝑗 =  0 as the pivot outcome, the fractional 

multinomial model also must establish expressions for every outcome within the logit 

framework. 

 

𝐸(𝑆𝑗|𝑥) = 𝐺(𝛽0 + 𝛽𝑘𝑥𝑘) = 𝐺(𝑧) = 𝑒𝑧/(1 +  ∑ 𝑒𝑧)

𝐽

𝑗=1

, 𝑗 = 1, 2, … , 𝐽. (3) 

 

𝐸(𝑆0|𝑥) = 𝐺(𝛽0 + 𝛽𝑘𝑥𝑘) = 𝐺(𝑧) = 1/(1 + ∑ 𝑒𝑧)

𝐽

𝑗=1

, 𝑗 = 0. (4) 

Use of the pivot outcome equation (4) to estimate multiple outcomes makes it possible to 

evaluate the effect of explanatory variables on several variables simultaneously. Therefore, when 

joined together, the fractional multinomial logit model estimates coefficients which predict the 

expected share of several categorical outcomes within a defined interval.   

By embedding the fractional logit function into the multinomial logit quasi-likelihood 

function, the econometric model can measure shares of outcomes—not probabilities—in what is 

a simplified form of the log likelihood function.34 This new function, as a member of the linear 
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exponential family, uses a quasi-maximum likelihood estimator (QMLE) and is efficient and 

consistently normally distributed provided the fractional logit function holds true.33 The QMLE 

approach will maximize this new function and, with the assistance of a fractional multinomial 

logit Stata package,38,39 run until it converges and is able to predict shares. 

However, because the multinomial logit estimator requires some normalization, these 

QMLE estimates will correspond to the coefficients in the multinomial shares model.34 Thus, it 

produces coefficients that may be difficult to interpret. For this reason, using the coefficients 

predicted from an estimation of the fractional multinomial logit model, we calculate average 

marginal effects (i.e., the mean of the marginal effects for all observation, as opposed to the 

marginal effect at the variable’s mean) for every independent variable on each dependent 

variable.  

Dependent variables 

The dependent variables are the share of total weekly food expenditures made at different 

locations, which we are calling food venue purchase shares. Share of food expenditures made at 

superstores and supermarkets were large enough to comprise their own categories, but due to the 

high number of store types, other expenditures were aggregated. In this manuscript, we 

aggregated all other FAH expenditures not made at a superstore or supermarket into a third 

category; this includes grocery stores, convenience stores (including gas stations), and smaller 

venues like farmers markets. Finally, all FAFH expenditures into a fourth category, which 

includes all weekly expenditures made at sit-down restaurants and fast-food restaurants. The 

shares of a household’s total food expenditures made at these four location categories are 

represented by Superstore Share, Supermarket Share, FAH Other Share, and FAFH Share. 

These are the four dependent variables—the food venue purchase shares for superstores, 
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supermarkets, other FAH stores, and FAFH locations—the sum of which represent all weekly 

food expenditures made by the household. 

Table 1 summarizes some basic descriptive information about the dependent variables 

used in the analysis. Even after group all other FAH stores, FAH Other Share is still the smallest 

category, representing about 14% of food expenditures, on average. Conversely, FAFH Share is 

the largest category at about 35%, followed by Superstore Share at 28%. The standard deviations 

reveal that these shares are heterogeneous between households, and the minimum and 

maximums suggest that each category is the location for both none and all of at least one 

household’s food expenditures. These statistics suggest that there is sufficient variance between 

households in shares of food expenditures at these locations for the analysis. 

Independent variables 

The independent variables selected to predict shares of food venue purchases are intended 

to represent those factors which our conceptual model hypothesizes most influence shopping 

behavior. These variables are summarized in Table 2. First, representing the neighborhood food 

environment, Mile to Superstore and Mile to Supermarket are both binary variables indicating if 

a household’s location is within a one-mile radius of a superstore or supermarket, respectively; in 

both cases, this applies to approximately 43% of households in the analyzed sample. 

Additionally, Car is a binary variable indicating if any household member owns or leases at least 

one vehicle, which is true for 84% of households in the analyzed sample.  

Second, representing household characteristics, ln(Income) is a continuous variable 

derived from household income and given a log transformation to correct its skewed distribution 

(incomes less than one were coded as 0); as a result, it estimated coefficients should be 

interpreted as the marginal change resulting from one-percent increase in household income. 
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Moreover, Size is a continuous variable representing the total number of members currently 

living the household, which is about 3 people for the average sampled household; while it is also 

skewed, a log transformation was not applied as it would complicate interpretation.  

Finally, SNAP is a binary variable indicating if any member of the household is a 

recipient of SNAP benefits (32% of the sample). Collectively, these variables will control for 

distance to major food venues, car access, income, household size, and SNAP participation in the 

econometric model. 

Results 

Drawing from 4,664 observations, the fractional multinomial model converged on a log 

pseudo-likelihood of -157,100,000 with a Wald chi-squared of 468.95. To ensure that standard 

errors were estimated robustly, observations were “clustered” by a pseudo primary sampling unit 

(PSU) and adjustments were made for 57 clusters where households in the same PSU. 

Table 3 presents the average marginal effects of the independent variables on purchase shares 

from different food venues. Average marginal effects that are statistically different from zero at 

the 5%, 1%, and 0.1% levels are indicated with one, two, or three asterisks, respectively; 

coefficients that are not statistically different from zero at the 5% level or below receive no 

asterisk. Of the model’s 120 coefficients for average marginal effects, 24 are significant at the 

10% level. 

A few other points must be made about the interpretation of the coefficients in Table 3. 

For binary variables, the coefficients represent the average change in purchase shares from 

different food venues resulting from a shift in the variables’ minimum to its maximum, across all 

households. For continuous variables, the coefficients represent the mean of the change in food 

venue purchase shares as a result of a marginal change in the explanatory variables for all 
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observations. Furthermore, because food venue purchase shares must always sum to one—as 

they are defined by a finite amount of total weekly food expenditures—the sum of the average 

marginal effects for any one explanatory variable is zero; in other words, what an explanatory 

variable might take away from one share, it gives to other shares. The upcoming discussion will 

highlight coefficients deemed to have statistical relevance in explaining difference in food venue 

purchase shares across all households in the sample. 

Discussion 

It is useful to review these results through the lens of the conceptual model. First, Table 3 

provides some statistically significant results relating to one-mile proximity to a superstore or 

supermarket—variables that represent the neighborhood food environment. Specifically, the 

model finds that households living within one mile of a superstore are associated with a 5.4% 

increase in food expenditures at a superstore and a 10% decrease in food expenditures at a 

supermarket, which are unsurprising. However, this condition is also correlated with a 5.0% 

increase in food spending on FAFH; this may make sense if FAFH establishments are often 

located near superstores or if superstores and FAFH locations attract similar customers. Finally, 

living within one mile of a supermarket is associated with a 12% decrease of food expenditures 

at superstores, a corresponding 10% increase of food expenditures at supermarkets, and no 

significant effect on the share of FAFH. While not fully supporting the assumption that 

consumers will only shop near their residence, these findings do suggest that proximity to a food 

venue location is, in fact, an important determinant of store choice for many consumers. If so, 

then the variety of foods offered at nearby superstores and supermarkets are feasibly correlated 

to food acquisition, consumption, and health. 

Relatedly, car access is a variable with statistically significant results. Specifically, 
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vehicle ownership or lease by a household member is correlated with a 4.7% decrease in food 

expenditures at other FAH locations and a 3.6% increase at FAFH locations. This may be 

because consumers are more likely to go some distance for a specific FAFH location, but only 

frequent other FAH locations that are nearby. Either way, this finding highlights that 

transportation access is an important consideration along with the neighborhood food 

environment. 

Second, the results find that neither income nor household size is a statistically significant 

predictor for any food purchase share in model, all else equal. Thus, our results do not find 

additional evidence that a household’s socioeconomic status, on its own, influences store choice. 

However, there may be particular location types for which income or household size is 

associated with a greater or lesser share of food expenditure if these effects canceled each other 

in either of the aggregated categories. Still, we maintain that income and household size remain 

important controls in the model. 

Third, the results in Table 3 suggest that SNAP participation does influence store choice, 

or to be exact, the percentage of weekly food expenditures that are spent at a particular store. It is 

important to reiterate that this is true even after controlling for proximity to store type (i.e., 

neighborhood food environment) and household size and income. Specifically, the model 

estimates that households with at least one member receiving SNAP benefits will spend 5.7% 

more of food expenditures at a superstore relative to non-SNAP households. This is compensated 

by SNAP households spending an estimated 7.3% less of food expenditures on FAFH relative to 

non-SNAP households. Both coefficients are highly significant and suggest that, all else equal, 

SNAP participation is associated with a lesser share of weekly food expenditures being made on 

FAFH, and a greater share at superstores. One might consider these findings in the context of the 
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literature linking FAFH with adverse nutritional outcomes.40,41 Together, they support a 

hypothesis which suggests that SNAP may encourage healthier food consumption, although this 

contradicts some of the current literature.26-29 This may be because store choice affects food 

acquisition differently for SNAP and non-SNAP recipients—that is, SNAP participation affects 

food venue choice away from FAFH venues, but encourages unhealthy food purchases at FAH 

stores. Regardless, the results suggest that more research is warranted to understand the complex 

relationship between SNAP participation, food store choice, food acquisition and health 

outcomes. 

Conclusion 

This study aimed to identify and measure the relevance of consumer determinants of food 

venue choice. After reviewing the literature, a conceptual model was designed that viewed food 

venue choice as a function of the neighborhood food environment, household characteristics, and 

SNAP participation. Using nationally representative cross-sectional data from the USDA’s 

FoodAPS, we examined how a set of explanatory proxy variables affected the shares of 

household weekly food expenditures made at different types of food venues—superstores, 

supermarkets, other FAH food venues, and all FAFH food venues. This was possible by using 

the fractional multinomial logit model, which enabled the analysis to consider all food venue 

choices simultaneously and compare their relative importance for food acquisition via purchase 

shares.  

Results were reported as average marginal effects in Table 3, where the estimated 

coefficients represent the average change in food purchase shares at the different food venues 

across the sample given one-unit changes in the explanatory variables. The analysis estimated 

that close proximity to a superstore or supermarket increased the share of food purchases made at 
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that store type. Car access increases the share of food purchases made at FAFH venues and 

decreased the share of purchases made at FAH venues other than a superstore or supermarket. 

SNAP participation also played a role, increasing the share of purchases at superstores and 

decreasing the share spent at FAFH venues, on average. Notably, neither income nor household 

size significantly impact purchase shares between the food venue categories. 

This study’s limitations should also be considered when interpreting the findings and 

planning future research. First, as this study uses food purchases to measure the relative 

importance of one food venue over others, it effectively discounts the importance of markdown 

food and omits food venues (e.g., family, neighbors, colleagues, soup kitchens) from whom food 

may be free. As this may serve a larger percentage of caloric intake for lower-income 

households, this is an important consideration in connecting food venue choice to consumption 

and health outcomes. For example, future work using the FoodAPS dataset could consider using 

a fractional multinomial logit analytical framework to look at the shares of calories and nutrients 

coming from different sources. However, a limitation of the fractional multinomial logit model is 

that it is unable to incorporate changes to the outcomes that are due to differences in 

characteristics between the outcomes themselves. Thus, the availability and quality of certain 

food as well as food venue characteristics—two other factors that are important to primary food 

shoppers when choosing a food venue17—are not controlled for the in the model. Incorporating 

all of these food venue factors into a decision-making model for consumers is another challenge 

to excite future work. 

These results provide some interesting considerations for the literature, especially given 

the reliability of the data and the analytical approach. Both the neighborhood food environment, 

including transportation access, play a role in determining food venue choice for enough 
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consumers for it to matter. While several localized studies have also found this to be true, this 

evidence is based on a nationally representative sample. In addition, SNAP participation affects 

food venue choice, though more research is needed to study the relationship between SNAP, 

food venue choice, food purchasing decisions and health; it may be that while SNAP 

participation leads to fewer purchases at FAFH venues, it may also negatively affect food 

purchasing decisions at FAH venues, and it is unclear whether this trade-off results in better or 

worse health outcomes relative to SNAP-eligible-not-receiving households. What is clear is that 

the impact of SNAP benefits on food acquisition is complex, and quick endorsements or 

critiques of its impact on health food purchases should be cautiously considered in light of an 

ever expanding literature. 
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Abstract 

A growing body of research describes how individuals make food shopping decisions in 

both time and space. The FoodAPS dataset provides a unique opportunity for understanding these 

patterns among a large sample across income, SNAP status, and settings. We addressed three 

questions in our research: (1) Where do participants shop for food at home (FAH) and how do 

individual characteristics interact with store characteristics and distance? (2) How does the 

nutritional content of foods purchased change as time from SNAP distribution increases? and (3) 

How does store choice influence the nutritional quality of FAH purchases? We used a conditional 

logit model to answer the first question, determining that overall, participants choose full-service 

supermarkets, larger stores, and stores closer to home but that store choice is influences by SNAP 

status, ethnicity, race, sex, car ownership and the level of urbanization of the county of residence. 

For the second question, we used general linear modeling to determine changes over time in dietary 

quality of FAH purchases, as measured by composite Health Eating Index (HEI) score. We found 

an increase in HEI-2010 score in the days immediately following SNAP distribution followed by a 

decrease until 20 days after distribution and then a moderate increase to the end of the SNAP-

cycle. For the final question, we used a generalized estimating equation (GEE) model for repeated-

measures to analyze the impact of store type on composite HEI score of FAH events. We found 

that purchases made at limited assortment stores had significantly higher HEI scores while dollar 

stores had significantly lower HEI scores than purchases at conventional supermarkets. 

Participating in SNAP had significant positive impact on composite HEI scores, relative to 

households income-eligible for SNAP but not participating. These results require closer 

consideration but have important implications for policies relating to what types of foods stores 

should be subsidized, through healthy food financing initiatives and SNAP and WIC authorization, 

and the way SNAP benefits are distributed over the course of the month. 
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Executive summary 

  A growing body of research describes how individuals make food shopping decisions in 

both time and space. We have collaborated on numerous local-scale studies which provide a strong 

theoretical and methodological foundation for broader food access questions. In these studies, we 

relied on relatively small convenience samples and a combination of in-person surveys, in-depth 

qualitative interviews, food store receipts, and food store audits. The FoodAPS dataset provided us 

with a unique opportunity for understanding these patterns among a large sample across income, 

SNAP status, and urban, suburban and rural settings.  

We addressed three questions in our research: 

1. Where do participants shop for food at home (FAH) and how do individual and household 

characteristics interact with store characteristics and distance? 

2. How does the nutritional content of foods purchased change as time from SNAP 

distribution increases? 

3. How does store choice influence the nutritional quality of FAH purchases?  

Question 1: Store choice 

We used a conditional logit model to answer this first question. To define the choice set—

the relevant set of stores from which participants likely choose their primary food store—we 

created shopping clusters by grouping nearby block groups where participants lived.  

Overall, we found that participants choose full-service supermarkets, larger stores, and 

stores closer to home but that store choice is influences by SNAP status, ethnicity, race, sex, car 

ownership and the level of urbanization of the county of residence. Specifically, participants 

receiving SNAP were even more likely to choose larger stores while participants in highly urban 

areas were less likely to choose larger stores than their suburban and rural counterparts. Hispanic 

participants were more likely than non-Hispanic participants to choose full-service supermarkets. 
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White participants were more likely to travel further than non-white participants, as were 

participants who owned a car and participants living in less urbanized areas.  

Question 2: Nutritional quality of FAH and time from SNAP distribution 

For the second question, we used general linear modeling to determine changes in dietary 

quality of FAH purchases, as measured by composite Health Eating Index (HEI) score of FAH 

purchases. Control variables included age of the primary respondent as a continuous variable and 

sex, race and ethnicity as categorical variables. 

Total HEI-2010 scores by household had a wide distribution from 24.73 at the 5th 

percentile to 70.20 at the 95th. Mean HEI-2010 among SNAP households was 46.16 (SD=13.96). 

Date of SNAP distribution was well distributed across the month. We found an increase in HEI-

2010 score in the days immediately following SNAP distribution followed by a decrease until 20 

days after distribution and then a moderate increase to the end of the SNAP-cycle.  

To account for skewed spending directly following SNAP distribution, the number of days 

since SNAP (DSS) was grouped into four time buckets based on raw distribution for regression 

analysis: 1) ≤1 day, 2) 2-5 days, 3) 6-19 days and 4) >19 days. Unadjusted regression of DSS 

against HEI-2010 score yields a 5.27-point decrease in household HEI-2010 between the second 

and fifth DSS as compared to ≤1 DSS (p<0.01). After controlling for demographic and household 

characteristics and amount of last SNAP benefit, the decrease in HEI-2010 in 2-5 DSS is 5.8 points 

(p<0.01). This mean drop in HEI-2010 continues in the 6-19 and the >19-DSS brackets although 

they have smaller decreases of 4.23 points (p<0.05) and 4.53 points (p<0.01) respectively. 

Question 3: Nutritional quality of FAH and store type 

For the final question, we used a generalized estimating equation (GEE) model for 

repeated-measures to analyze the impact of store type on composite HEI score of FAH purchases. 

The primary independent variable was store type based on sub-channel categories in the 
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TDLinx/STARS dataset.  

Controlling for the host of shopper characteristics (age, race/ethnicity, education, car 

ownership), purchases at natural/gourmet and limited assortment stores had significantly higher 

composite HEI scores than conventional supermarkets while purchases at dollar stores and all other 

stores had significantly lower composite HEI scores than conventional supermarkets. Purchases by 

households enrolled in SNAP did not have significantly different composite HEI scores from 

households that were not SNAP eligible, but purchases by households that were eligible for SNAP 

based on household income but not receiving SNAP had significantly lower composite HEI scores 

than households enrolled in SNAP. Smaller shopping trips (involving expenditures of less than 

$30) had significantly lower composite HEI scores than larger shopping trips (involving 

expenditures of more than $30). Shopping trips further from home had lower HEI scores than food 

shopping trips closer to home.  

Research implications 

These results together provide additional evidence of significant spatial and temporal 

elements to food shopping that must be considered in any analysis of “food deserts” or access to 

healthful foods. They confirm what we have learned from our previous research in Philadelphia 

and Chester PA about the relevance of distance from home to food shopping and the many ways 

that relationship varies based on race, ethnicity, sex, car ownership, and the level of urbanization in 

an area. They also confirm what we have learned about the relationship between healthfulness of 

food purchases and the type of food store where they are purchased. Identifying a distinct temporal 

pattern in the healthfulness of foods purchased based on days since SNAP distribution provides an 

important additional consideration in understanding food shopping patterns among low-income 

households. We are still considering the implications of the research about store type and HEI but 

would suggest based on these findings that public financing and SNAP authorization of dollar 
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stores or other smaller stores (such as convenience stores) should be reconsidered because they 

tend to involve lower nutritional quality than supermarkets and other larger-format foods stores.  

Research limitations and next steps 

We recognize that these results are somewhat preliminary and require some additional 

adjustments to finalize our models. We would have liked to use the many HEI component scores 

for the second and third research questions, but we had too many questions about how to represent 

those scores to proceed. As we learn more about how these scores work, we will incorporate these 

additional outcome variables.  

Introduction 

A growing body of research describes how individuals make food shopping decisions in both 

time and space, adding needed complexity to our understanding of “food deserts.” We have 

collaborated on numerous local-scale studies which provide a strong theoretical and 

methodological foundation for broader food access questions. We have worked with several 

colleagues (S Kumanyika, K Glanz, A Karpyn, C Cannuscio, K DiSantis, J Hirsch, M Barnett) to 

develop a better understanding of food shopping behavior of low-income urban residents and how 

the community and consumer food environments (Glanz et al., 2005) impact diet quality and 

obesity risk. Relying on in-person surveys, in-depth qualitative interviews, food store receipts, and 

food store audits, our studies have led to the following conclusions:  

 Most people travel beyond the closest supermarket to do most of their food shopping 

(Cannuscio et al., 2012; Hillier et al., 2011). Most people shop at multiple food stores 

(DiSantis et al., 2012; Chrisinger et al., in preparation). People travel further to shop at 

stores with greater availability of healthful foods (Cannuscio et al., 2012). These 

conclusions are consistent with other recent studies, including Black et al., 2013 and Zenk 

et al., 2011.  
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 Distance from home is only one of many significant factors in food store choice. Food 

store choice also varies by use of federal food assistance benefits (Hillier et al., 2011), 

vehicle ownership, race/ethnicity, and gender, and activity space of food shoppers and 

proximity to transit, prices, size, and availability of healthful foods at stores (Hillier et al., 

in press; Liese et al., 2013; Kerr et al., 2012; Jilcott et al., 2011). Food shoppers have 

different expectations for different types of food shopping trips, and this has consequences 

for mode of transportation (Hirsch & Hillier 2013).  

 The type of food store chosen (i.e., full-service supermarket, limited assortment, 

convenience store) influences the healthfulness of foods purchased (Chrisinger et al., in 

review; Jilcott et al., 2011; Gustafson et al., 2013; Gustafson, et al., 2012). 

The FoodAPS data set has allowed us to test the generalizability of our findings from 

Philadelphia and offer insights on the interactions between food environment, food choice, and 

food assistance.  

In our initial proposal from May 2014, we identified three research questions:  

1. Where do participants shop for food at home (FAH) and how do individual/household 

characteristics interact with store characteristics and distance?  

2. How does store choice influence the nutritional quality of FAH purchases, controlling for 

individual and household characteristics? 

3. How does the local food environment influence the nutritional quality of FAH purchases?  

For all three questions, we proposed to investigate how SNAP participation interacts with the 

outcomes of interest. In September 2015, we requested an amendment to these original research 

questions, reflecting the interest of a new doctoral student, Eliza Whiteman, in the time of month of 

food purchases. Because of the considerable time required to work with the nutrition data, we 

decided not to pursue our original research question about the local food environment, thus 
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substituting our original third research question with the following: 

3. How does the nutritional content of foods purchased to be consumed at home change as 

time from SNAP distribution increases? 

This final report is organized around these three research questions. We report on the research 

methods, data, results and discussion for each of these research questions separately, then address 

our findings from all three research questions together in the final conclusion section. We 

acknowledge that we have work to do in finalizing all of these models; we anticipate that feedback 

from the University of Kentucky and Economic Research Services team will be very helpful in that 

process. 

Question 1: Methods 

Consistent with our approach in Hillier et al, 2015, we used a conditional logit model to 

determine how individual shopper, trip distance, and food store characteristics interact and help 

explain food store choice. We approached the question of choice set—the pool of stores from 

which individual shoppers are choosing—differently, however. These two elements of our discrete 

choice model are described below. 

Conditional logit model 

Given a set of individuals (households) i I and stores, s S , if the set of store alternatives 

relevant for individual, i , is denoted by 
iS S , then our conditional logit model takes the general 

form 

(1) 
exp( )

( ) , ,
exp( )

i

is
i i

iss S

V
P s s S i I

V 

  


 

where ( )iP s  denotes the probability that store s  is chosen by individual i  from set 
iS .  These 

choice probabilities are assumed to depend on the value, 
isV , of each store s  to individual i .  As in 
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linear regression, these values are assumed to be representable as linear functions of a relevant set 

of store attributes, ( : 1,.., )sjx j J , such as size and availability of healthful foods at store s .  These 

values may differ among individuals, depending on attributes, ( : 1,.., )ikz k K , such as the sex and 

race of the individual. Such value differences can be captured by interacting individual attributes 

with each store attribute. The primary measure of accessibility was the travel distance from 

individual i ’s residence to each store s , designated as home distance, 
1( )d is . However, we were 

also interested in the distance to store s from the place where i  spends the most time (such as job 

location), here designated as place distance, 
2( )d is . As with store attributes, the value of these 

distance accessibilities may differ among individuals. For example, such distances may be less 

important for car owners.  Such effects can again be captured by interacting these distances with 

individual attributes. Hence in the most general model considered here, values of stores for 

individuals are taken to be linear functions of the form: 

(2) 
2

1 1 1 1
( ) ( )

J K K

is j sj kj ik sj h h kh ik hj k h k
V x z x d is z d is   

   
      
        

where the first term on the right hand side involves store attributes together with individual 

interaction effects and the second term involves distances (residential and place) together with their 

individual interaction effects.  

Following standard terminology, coefficients 
j  and 

h  are referred to as the “main 

effects” for store attribute j  and distance attribute h , respectively. Similarly, for any given 

individual attribute, k , coefficients kj and 
kh  are referred to as “interaction effects” between k  

and, respectively, store attribute, j , and distance attribute, h . To interpret these coefficients, note 

for example that the effects of store attribute j  can be isolated by considering two hypothetical 
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stores, s  and s , that differ only with respect to attribute j . To capture the effects of a unit change 

in attribute, j , suppose in addition that 1sj s jx x   . Then the relative likelihood of any individual i  

choosing store s  versus s  is seen from (1) and (2) to be of the form:(3)

  1 1
( ) / ( ) exp ( ) ( ) exp

K K

i i j sj s j kj ik sj s j j kj ikk k
P s P s x x z x x z     

       
    

So in this context it is clear that “main effect”,
j , reflects that component of change in the relative 

likelihood of choosing s  versus s  which is common to all individuals, i .1 Similarly,
kj , reflects 

the additional component of change in this relative likelihood that is specific to individuals with 

thk attribute level, 
ikz .2  Parallel interpretations can be given to the distance parameters, 

h  and 
kh . 

Store choices and choice sets 

We defined the relevant store choice for each individual i  to be the primary food store used 

by the primary adult respondent in the FoodAPS household. We identified the relevant choice set, 

iS , for each individual i  to be the set of all store choices made by individuals in i ’s shopping 

cluster. We created these shopping clusters by grouping nearby block groups where participants 

lived using visual inspection of maps in ArcGIS showing lines between block group centroids and 

the primary food stores chosen by participants in each block group. Each block group could only 

be in one shopping cluster. In Figure 1.1 below, the small dots represent block group centroids of 

participants, the x’s represent all food stores, and the large colored dots represent primary stores 

                                                            
1 Technically one should add “for all individuals for whom both s  and s  are relevant options”. But since 

j
  is 

clearly independent of these particular option choices, we ignore this complication. 
2 By taking logs in (3), these can also be interpreted as linear changes in “log odds”, similar to logistic regression. 

Alternatively, one can obtain interpretations in terms of “elasticities” and “cross-elasticities” of substitution, as 

for example in Section 3.6 of Train (2009).  
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chosen, graduated based on the number of people in the dataset who chose that as their primary 

store. The colors show distinct food shopping clusters. 

       

This generated 221 shopping clusters that included a maximum of 105 different participants and 20 

different stores. 

Ideally, this choice set would include all of the store-choice options actually perceived by 

each individual to be relevant. But since this data is typically not available (and indeed may not 

even be fully known to individuals themselves), it is necessary to define such sets exogenously.3   

Question 1: Data 

The primary food store (from the household dataset) served as the dependent variable. 

Shopper characteristics served as independent variables. These included sex (SEX; female or not), 

race (RACE; white or not), ethnicity (HISP; Hispanic or not); SNAP participation (SNAP), car 

                                                            
3 For additional discussion of such choice-set identification issues, see for example Fotheringham (1988) and 

Pelligrini (1997). 
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ownership (CAR), and distance to primary store from home (DIST) from the individual and 

household FoodAPS datasets. We also included the percent urban population of the county in 

which the participant lived (URBAN; from 2010 US Census) to better understand 

urban/rural/suburban differences, particularly in regard to distance traveled to primary food store.  

Store characteristics also served as independent variables. These included store type 

(SUPMKT, full-service supermarket or not) and square footage (SQFT; continuous) from the 

TDLinx/STARS datasets.  

Question 1: Results 

Only primary shoppers for whom characteristics were known about their primary food store 

were included in the analyses. Data on store characteristics were incomplete for 693 of the primary 

stores chosen, leading to a sample of 4015 (reduced from 4826). We further eliminated participants 

choosing stores too far to be relevant choices for others in their shopping cluster. We did this 

manually, visually inspecting all participant-primary food store combinations in ArcMap that 

involved a distance of 10 miles or more. This led us to develop the rule that if a store trip was more 

than twice as long as the next longest trip in the shopping cluster, we would eliminate it. This led to 

the removal of an additional 18 participants and a final sample of 3997.  

SQFT, SUPMKT and DIST were the three significant main effects in the model. Overall, 

participants were more likely to choose larger stores, full-service supermarkets rather than other 

types of food stores, and stores closer to home. Interaction effects show that participants receiving 

SNAP were even more likely to choose larger stores (SQFT-SNAP) while participants in highly 

urban areas were less likely to choose larger stores than their suburban and rural counterparts 

(SQFT-URBAN). Hispanic participants were more likely than non-Hispanic participants to choose 

full-service supermarkets (SUPMKT-HISP). White participants were more likely to travel further 

than non-white participants (DIST-RACE), as were participants who owned a car (DIST-CAR) 
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and participants living in less urbanized areas (DIST-URBAN).  

Question 1: Discussion 

None of these results are surprising and all are consistent with our findings from 

Philadelphia. All things being equal, people choose larger supermarkets closer to home. But of 

course, all things are not equal and these results indicated differences across sex, race, ethnicity, 

car ownership, and rura/urban locations.  

We conducted additional analyses to see if there was anything more to be said about SNAP 

participation. To do so, we first constructed a logistic regression of SNAP on the other shopper 

attributes. These results were qualitatively the same as the pairwise correlations, and show that 

SNAP is most strongly (negatively) related to RACE. So one experiment was to drop RACE and 

see if there is an effect on SNAP. Here only SQFT-SNAP increased in significance. Finally we 

removed HISP and SEX as well, just to see if there was any effect. Again the conclusion was the 

same, so that there seem to be no further interesting conclusions that can be drawn about shoppers 

with SNAP. As one last check, we removed SNAP altogether, and found that DIST-RACE and 

DIST-CAR were slightly more significant, but with no real qualitative changes.  

Finally, we considered other attributes in the same way. By dropping SEX, one obtains 

more significant SQFT-SNAP and DIST-CAR, but no qualitative changes. Similarly, dropping 

HISP or RACE (already done) had no qualitative effects. These results are also consistent with the 

general lack of correlation among these attributes. So the above regression results were adopted as 

final. 

 Question 2: Research methods 

Statistical analyses were conducted using STATA 14 software on NORC Thin Client 

hardware. General linear modeling was used to determine changes in dietary quality as the number 

of days since SNAP benefit distribution increased. Regressions were controlled for household size, 
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household income, and amount of last SNAP benefit as continuous variables. Regressions were 

also controlled for the age of the primary respondent as a continuous variable and for sex, race and 

ethnicity as categorical variables. 

Question 2: Data 

The Healthy Eating Index-2010 (HEI-2010) total score was used as the primary outcome 

variable for measuring dietary quality. The HEI-2010 was developed by the National Cancer 

Institute and the USDA to measure how American diets compare nutritionally to the Dietary 

Guidelines for Americans. The HEI-2010 total score is comprised of 12 components – eight 

measured for adequacy – 1) total fruit, 2) whole fruit, 3) total vegetables, 4) greens and beans, 5) 

whole grains, 6) dairy, 7) total protein foods, 8) seafood and plant proteins, 9) fatty acids – and 

three for moderation – 10) refined grains, 11) sodium, and 12) empty calories. Because the index 

uses a density measure and follows a universal set of standards, the index can be applied to 

measure and compare nutritional quality of foods at various scales including individual 

consumption or purchasing, restaurants, and the broader food environment (Jahns et al. 2015). 

SNAP participation was determined by self-report and administrative matching. The 

number of days since SNAP benefits were distributed (DSS) was defined as a continuous variable 

by determining time from last reported SNAP disbursement to start of data collection week. For 

those households nearing the end of the benefit cycle at the time of the initial survey, it was 

assumed they received their benefits on the same day the next month, therefore their benefits would 

be renewed during the study period. 

Question 2: Results 

FoodAPS contains a nationally representative sample of 4,826 households. Of the sample, 

1,581 households were current SNAP participants while 1,233 were eligible for SNAP, but not 
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participating. After removing observations where data were missing for DSS or where households 

had no FAH purchases for the data collection week, there were 1,263 remaining SNAP households. 

The majority of primary respondents were female (n=1,014), white (n=819) and had at least one 

child living in the home (n=785). Nearly sixty percent of the SNAP households in this analysis 

possessed a high school degree or less and 46.6% had an annual income of less than $15,000. (See 

Table 2.1). 

Total HEI-2010 scores by household had a wide distribution from 24.73 at the 5th 

percentile to 70.20 at the 95th. Mean HEI-2010 among SNAP households was 46.16 (SD=13.96). 

Date of SNAP distribution was well distributed across the month. Visual assessment of a mean 

lowess curve revealed an increase in HEI-2010 score in the day immediately following SNAP 

distribution followed by a decrease until 20 days after distribution and then a moderate increase to 

the end of the SNAP-cycle. To account for skewed spending directly following SNAP distribution, 

DSS was grouped into four time buckets based on raw distribution for regression analysis – 1) ≤1 

day, 2) 2-5 days, 3) 6-19 days and 4) >19 days. As shown in Table 2, unadjusted regression of DSS 

against HEI-2010 score yields a 5.27 point decrease in household HEI-2010 between the second 

and fifth DSS as compared to ≤1 DSS (p<0.01). After controlling for demographic and household 

characteristics and amount of last SNAP benefit, the decrease in HEI-2010 in 2-5 DSS is 5.8 points 

(p<0.01). This mean drop in HEI-2010 continues in the 6-19 and the >19-DSS brackets although 

they have smaller decreases of 4.23 points (p<0.05) and 4.53 points (p<0.01) respectively. 

Question 2: Discussion 

Episodic food insecurity and inconsistent consumption of macronutrients both have 

significant health implications. The data analyzed in this study from USDA’s FoodAPS study 

provide further evidence of the dynamic nature of food acquisitions and dietary quality over the 

SNAP-cycle. When controlling for demographic and household characteristics, on average study 
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participants had an HEI-2010 total score of 34.31 for the week immediately following the day of 

their benefit distribution. If data collection took place 2-5 days from SNAP distribution, household 

HEI-2010 decreased by 5.8 points (p<0.01), which represents nearly a half a standard deviation 

from overall mean HEI-2010. Such a large decrease in diet quality in the days following SNAP 

distribution suggests SNAP participants are more able to acquire healthful foods when benefits are 

flush and that dietary quality is compromised as benefits are diminished. It is important to note that 

on the whole SNAP participants in this study had a lower HEI-2010 total score than the national 

average of 49.8 for men and 52.7 for women (Guenther et al. 2014). Research on the comparative 

healthfulness of SNAP diets has been mixed and to better understand these differences it would be 

useful to analyze HEI-2010 of non-SNAP FoodAPS study participants in the future.  

Study Limitations 

Data for this study were collected for one week per household. This means that it is not 

possible to compare how an individual household’s dietary patterns and food purchasing 

acquisitions change as DSS increases. Instead, this analysis compares the dietary quality for the 

week of data collection by household compared to DSS to determine if on average, households 

further from SNAP distribution have poorer HEI-2010 scores. While date of SNAP distribution 

was randomly distributed throughout the sample, this may still pose slight endogeneity problems as 

those households with less healthy food purchasing habits may exhibit this pattern throughout the 

month. Another limitation of the study is that FoodAPS provides food-purchasing data at the 

household level and not food consumption data. We cannot deduce from the data exactly what each 

individual consumed or whether the items purchased in that week were consumed during that same 

time period. 

Implications for research and practice 

This study demonstrates that increasing time from SNAP distribution is associated with a 
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reduction in overall dietary quality. This fluctuation in dietary quality may be a result of once 

monthly food assistance benefit distribution, which has already been demonstrated in the literature 

to produce fluctuations in food spending and calorie consumption leading to episodic food 

insecurity. Increasing SNAP distribution to bimonthly may help to smooth these fluctuations in 

diet, however to properly assess this it would be useful to first compare the food shopping patterns 

of SNAP households to eligible non-SNAP households as well as to a higher income cohort. This 

analysis was not possible within the FoodAPS dataset as data collection took place at a variety of 

different times in the month and cannot be matched with time of income receipt for those 

households not participating in SNAP, however future studies could be designed to answer this 

question. Additionally, a pilot program where SNAP households are randomly assigned to receive 

benefits once or twice per month could be implemented to assess efficacy of increasing benefit 

distribution on diet quality.  

Question 3: Research Methods 

A generalized estimating equation (GEE) model for repeated-measures was performed 

using SAS software. 

Question 3: Data 

The unit of analysis was a shopping trip that involved purchase of food to be eaten at home (FAH 

event). The outcome variable was nutrition quality, as measured by the composite Healthy Eating 

Index (HEI) score of all food items purchased during FAH events.                                        

The primary independent variable was store type based on sub-channel categories in the 

TDLinx/STARS dataset. See table 3.2 for a description of these categories.  

Additional control variables included store characteristics including store size (in square 

feet) total annual sales, trip characteristics including weekday or weekend, week of month, amount 

spent, payment type (SNAP, WIC, cash or check, debit, credit or other), and distance traveled to 
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store from home.  Shopper/household characteristics were also included in the model: age, 

race/ethnicity, sex, education level of shopper, income level of household, car ownership, 

household size, current SNAP status (current receiving, eligible but not receiving, not eligible). 

Question 3: Results 

A total of 4,962 shoppers made a total of 11,472 shopping trips. Table 3.1 provides 

descriptive statistics on shoppers and their trips. Shopping trips were more likely to be made during 

the week than weekend and in later in the month. Participants spent a median of $19.79 per 

shopping trip, with 63.6% of trips involving expenditures of less than $30. Cash, check or debit 

was the most common form of payment, followed by SNAP (15.6%) and credit card (13.4%).  

Question 3: Discussion 

Our results provided some surprises. We were surprised that purchases made at limited 

assortment stores had higher HEI scores than conventional supermarkets, even in the multivariate 

model. This finding is worth closer analysis to see what specific foods people are buying and at 

which specific limited assortment stores they are making their purchases. Also surprising was that 

purchases made closer to home had higher composite HEI scores. Again, further analysis is 

warranted to make sense of that finding which is counter-intuitive to the idea that discerning 

shoppers would put greater effort into traveling to stores with more nutritious foods. Most of our 

findings were not surprising, either, particularly in regard to the relatively low nutritional quality of 

foods purchased at dollar stores and the positive relationship between educational status and 

composite HEI scores. That smaller food trips generally involve foods of lower nutritional value is 

not surprising but it is important, representing an important point of intervention. It would be worth 

adjusting the $30 threshold to see at what expenditure level nutritional quality starts to improve. A 

significant SNAP effect, indicating that households receiving SNAP are purchasing more healthful 

foods than households that are income-eligible for SNAP but not receiving SNAP, is not surprising 
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but is very encouraging.  

Conclusion 

The results from these three different analyses together provide additional evidence of 

significant spatial and temporal elements to food shopping that must be considered in any analysis 

of “food deserts” or access to healthful foods. They confirm what we have learned from our 

previous research in Philadelphia and Chester PA about the relevance of distance from home to 

food shopping and the many ways that relationship varies based on race, ethnicity, sex, car 

ownership, and the level of urbanization in an area. They also confirm what we have learned about 

the relationship between healthfulness of food purchases and the type of food store where they are 

purchased. Identifying a distinct temporal pattern in the healthfulness of foods purchased based on 

days since SNAP distribution provides an important additional consideration in understanding food 

shopping patterns among low-income households.  Policy implications for WIC, SNAP, HFFI 

funding 

We recognize that these results are somewhat preliminary and require some additional 

adjustments to finalize our models. We would have liked to use the many HEI component scores 

for the second and third research questions, but we had too many questions about how to represent 

those scores to proceed. As we learn more about how these scores work, we will incorporate these 

additional outcome variables. We applied for and have been granted access to the FoodAPS dataset 

for an additional 12 months which will allow us to take these next steps. 
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Table 1.1 Conditional Logit Results 
 

VAR 

SQFT 

PARAM 

0.016974 

Z-VAL 

6.644335 

PROB 

0.000000 

SQFT-RACE 0.001983 1.038583 0.298998 

SQFT-HISP 0.001182 0.633739 0.526251 

SQFT-SNAP -0.002815 -1.909759 0.056164 

SQFT-CAR -0.001719 -1.114230 0.265181 

SQFT-SEX -0.001604 -1.064844 0.286946 

SQFT-URBAN -0.007207 -4.955493 0.000001 

SUPMKT 0.016943 2.536975 0.011181 

SUPMKT-RACE -0.003815 -0.755090 0.450195 

SUPMKT-HISP 0.011398 2.442443 0.014588 

SUPMKT-SNAP -0.002724 -0.704852 0.480902 

SUPMKT-CAR 0.001277 0.318852 0.749838 

SUPMKT-SEX -0.001735 -0.460274 0.645320 

SUPMKT-URBAN -0.004859 -1.289173 0.197338 

DIST -0.373611 -8.671101 0.000000 

DIST-RACE 0.063106 1.877245 0.060485 

DIST-HISP 0.010510 0.350533 0.725939 

DIST-SNAP -0.004271 -0.207091 0.835939 

DIST-CAR 0.053792 1.962564 0.049697 

DIST-SEX 0.036760 1.695529 0.089975 

DIST-URBAN -0.174488 -7.488753 0.000000 

 

SUCCESS RATE = 38.0285% 

MODEL SUCCESS RATE = 25.6263% 

RANDOM SUCCESS RATE = 18.2648% 



Food APS Research at UKCPR – Page 332 

 

Table 2.1. Demographic Characteristics of Sample 

 
 n % 

Total 1263 100.0 
 

Age of Primary Respondent 

18-30 

 

 
323 

 

 
25.6 

31-45 412 32.6 

46-60 359 28.4 

>60 169 13.4 
 
Sex of Primary Respondent 

Male 

 

 
249 

 

 
19.7 

Female 1,014 80.3 

 

Child in Home 
 

785 
 

62.2 

 

Race of Primary Respondent 

White 

 

 
819 

 

 
64.8 

Black/African American 246 19.5 

American Indian or Alaska Native             < 20         < 1.6 

Asian             < 20          <1.6 

Native Hawaiian or Other Pacific Islander             < 20          <1.6 

Other Race 130 10.3 

Multiple Races 35 2.8 

 

Hispanic 
 

311 
 

24.6 

 

Education level 

Less than high school 

 

 
345 

 

 
27.3 

High school or GED 410 32.5 

Some college 405 32.1 

College graduate 102 8.1 
 
Annual Household Income 

Less than $15k/yr 

 

 
589 

 

 
46.6 

$15-24,999k/yr 302 23.9 

$25-34,999k/yr 173 13.7 

$35-49,999k/yr 101 8.0 

  $50-74,999k/yr  98  7.8   

 
Being older was associated with an increase in HEI-2010 of 0.12 points for each year (p<0.001). Each additional year of 

education resulted in a 0.49 point increase in HEI-2010 (p<0.001) and being Hispanic was associated with a 4-point larger 

score (p<0.001). While there was a very strong positive association between primary respondents who identified as Asian, 

Native Hawaiian or Other Pacific Islander and HEI-2010 score, these outcomes were not statistically significant. With the 

exception of White and Black, the sample size within each race category was very small. 
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Table 2.2. Mean HEI-2010 Score by Time Since SNAP 
 
 
 

Days Since SNAP 

Freq. Mean SE 95% CI 

≤ 1 day  80 49.92 1.46 47.02 - 52.83 

2-5 days 197 44.65 0.98 42.72 - 46.58 

6-19 days 600 46.27 0.59 45.12 - 47.42 

> 19 days 386 45.98 0.69 44.63 - 47.33 
 
 
 
 

Table 2.3. Days since SNAP (DSS) regressed on HEI-2010 

 
  

β1 

 
SE 

Unadjusted 

CI 
  

p 

 
β1 

 
SE 

Adjusted 

CI 
  

p 

Days Since SNAP Distribution 

<=1 day 

 
49.922 

 
1.557 

 
46.867 

 
52.977 

 
0.000 

 
34.309 

 
4.254 

 
25.963 

 
42.655 

 
0.000 

2 - 5 days -5.273 1.847 -8.895 -1.650 0.004 -5.799 1.835 -9.398 -2.199 0.002 

6-19 days -3.651 1.658 -6.904 -0.399 0.028 -4.227 1.649 -7.462 -0.991 0.011 

>19 days -3.942 1.711 -7.299 -0.585 0.021 -4.528 1.702 -7.867 -1.190 0.008 

 

Age 0.115 0.031 0.055 0.176 0.000 

Sex -0.062 1.017 -2.057 1.932 0.951 

Race      
Black/African American -1.516 1.036 -3.548 0.516 0.144 

Am. Indian or Alaska Nat. -0.494 3.377 -7.119 6.132 0.884 

Asian 7.347 4.032 -0.564 15.258 0.069 

Nat. Hawaiian/Oth. Pac. Islander 15.514 7.970 -0.123 31.151 0.052 

Other Race -0.769 1.545 -3.800 2.263 0.619 

Multiple Races -0.981 2.382 -5.653 3.692 0.618 

Hispanic 3.965 1.134 1.740 6.189 0.000 

Children in the home 0.183 1.179 -2.130 2.497 0.876 

Income 0.000 0.000 0.000 0.000 0.120 

Education 0.487 0.149 0.194 0.781 0.001 

SNAP benefit amount 0.002 0.003 -0.003 0.007 0.440 
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Table 3.1: Descriptive data on participants, shopping behaviors, and food expenditures 

 
Individual Characteristics (n=4,962 with at least one trip) n (%) 

Age > 40 2,969 (59.8) 

Sex (Female) 3,364 (67.8) 

Race/ethnicity 

White (non-Hispanic) 

Black/Af Am (non-Hispanic) 

Hispanic (any) 

Other (non-Hispanic) 

 
3,006 (60.6) 

624 (12.6) 

1,013 (20.4) 

319 (6.4) 

SNAP/Income Status 

SNAP household 

SNAP eligible, NOT receiving SNAP 

Non-SNAP eligible 

 
1,614 (32.5) 

1,183 (23.8) 

2,165 (43.6) 

Education 

<HS 

HS/GED 

Some college or more 

Missing 

 
808 (16.3) 

1,476 (29.7) 

2,666 (53.7) 

12 (0.2) 

Own/lease car * 4,275 (86.2) 

[9 missing (0.2)] 

Food Expenditures and Trip Characteristics (n=11,472)  

Weekend 3,308 (28.8) 

Week of month 

First (days 1-7) 

Second (days 8-14) 

Third (days 15-21) 

Fourth + Fifth (days 22-31) 

 
2,413 (21.0) 

2,827 (24.6) 

3,010 (26.2) 

3,222 (28.1) 

Amount spent ($) 

Median [IQR] 

% less than $30 

 
19.79 [8.36- 

44.23] 

7,294 (63.6) 

Median [IQR] distance traveled from home (miles) 2.37 [1.17-5.40] 

[552 missing] 

Payment type (can be multiple, the below is prioritization 

order) 

SNAP (any) 

WIC 

Cash or check 

Debit card 

Credit card 

Other (TANF or gift card) 

Missing 

 
1,791 (15.6) 

226 (2.0) 

4,730 (41.2) 

3,000 (26.2) 

1,534 (13.4) 

41 (0.4) 

145 (1.3) 

* This is actually at household level, but will treat as at the individual level. 
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Table 3.2 provides descriptions of store categories and Table 3.3 shows the distribution of 

shopping trips by store category. Trips to conventional supermarkets made up the largest 

proportion of shopping trips (54.4%) followed by supercenters (19.3%). Composite HEI scores 

were highest at natural/gourmet stores, followed by conventional clubs, limited discount, 

conventional supermarkets and supercenters. Composite HEI scores were lowest at dollar stores 

and all other stores. Mean component HEI scores for fruits, greens and beans, and whole grains 

were 0 for all store categories, reflecting the reality that these healthful foods are not purchased 

in significant enough quantities to conduct meaningful analysis or that more work is needed for 

us to understand the HEI component scores. HEI component scores for vegetables could be 

determined; average scores were highest at natural/gourmet stores followed by limited discount 

stores. 

 
Table 3.2. Store Categories and Descriptions 

Store Category* Description 

conventional 

supermarkets 

Large food stores with surface or structured parking, including both 

chain and independently-operated retailers; often include several 

in-store departments, such as a bakery, meat counter, or prepared 

foods section (full-service) 

Discount/limited 

assortment 

supermarket 

Large food stores, smaller than supermarkets and with fewer or no 

in-store departments, but larger than small retailers; may also 

emphasize price discounts (i.e. deep discount stores). 

Supercenter Household retailers, like Target, Kmart, Walmart, and CVS, who 

devote most store space to non-food items, but also offer a limited 

selection of grocery items.  Even though some general retailers may 

offer large quantities of food (i.e. big box stores), they typically 

have a limited amount of perishable foods and no in-store 

departments. 

Natural/gourmet  

Dollar store  

Conventional club Membership-only warehouse retailers selling bulk quantity items. 

Other All other vendors including military commissaries, produce 

markets, co-ops, convenience stores 

*Adapted from common categories used in food environment research (Morland, et al., 2002) 
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Table 3.3. Distribution of 11,472 food shopping trips made by 4,962 by HEI score 

 
Store Type Number 

(%) of 

trips by 

store 

type 

Amount 

spent* 

Overall 

HEI 

score* 

HEI 

Fruits* 

HEI 

vegs* 

HEI 

greens and 

beans* 

HEI 

whole 

grains* 

conventional 

supermarket 

6,238 

(54.4) 

34.43±0.54 

 
20.00 [9.08-

42.86] 

47.20±0.17 

 
47.16 

[37.49- 

56.70] 

0.42±0.02 

 
0 

[0-0] 

2.20±0.03 

 
1.64 

[0-5] 

0.99±0.02 

 
0 

[0-0] 

1.54±0.04 

 
0 

[0-0] 

Supercenter 2,217 

(19.3) 

46.07±1.07 

 
28.46 

[12.60- 

59.88] 

47.03±0.28 

 
46.93 

[37.94- 

56.01] 

0.40±0.03 

 
0 

[0-0] 

1.91±0.04 

 
1.18 

[0-4.13] 

0.83±0.04 

 
0 

[0-0] 

2.05±0.07 

 
0 

[0-3.20] 

Discount/ 

limited 

assortment 

569 

(5.0) 

30.63±1.47 

 
19.54 [9.26-

39.33] 

47.58±0.56 

 
47.62 

[37.44- 

56.96] 

0.37±0.05 

 
0 

[0-0] 

2.59±0.09 

 
2.73 

[0-5] 

0.99±0.08 

 
0 

[0-0] 

1.52±0.13 

 
0 

[0-1.14] 

Conventional 

club 

361 

(3.1) 

100.25±5.56 

 
66.47 

[32.54- 

132.44] 

51.85±0.81 

 
51.50 

[40.29- 

63.37] 

0.42±0.06 

 
0 

[0-0] 

1.97±0.11 

 
1.02 

[0-4.77] 

1.07±0.11 

 
0 

[0-0] 

1.94±0.19 

 
0 

[0-2.36] 

Natural/ 

gourmet 

270 

(2.4) 

38.16±2.15 

 
30.15 

[15.34- 

49.30] 

55.26±0.89 

 
57.46 

[46.00- 

65.79] 

0.56±0.09 

 
0 

[0-0] 

2.91±0.13 

 
3.78 

[0-5] 

1.80±0.14 

 
0 

[0-5] 

2.27±0.23 

 
0 

[0-3.90] 

Dollar store 570 

(5.0) 

13.43±0.63 

 
8.00 [4.00-

16.41] 

42.49±0.49 

 
41.09 

[34.71- 

50.07] 

0.16±0.03 

 
0 

[0-0] 

1.20±0.08 

 
0 

[0-2.21] 

0.29±0.05 

 
0 

[0-0] 

1.32±0.13 

 
0 

[0-0] 

Other 1,247 

(10.9) 

18.50±0.85 

 
8.71 [4.00-

20.50] 

43.08±0.39 

 
42.99 

[33.34- 

53.34] 

0.37±0.03 

 
0 

[0-0] 

1.46±0.06 

 
0 

[0-4.04] 

0.52±0.04 

 
0 

[0-0] 

0.89±0.08 

 
0 

[0-0] 

* Presenting as: 

Mean ± standard error 

Median [IQR] 
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Differences in HEI composite scores persisted in the multivariate GEE models (See Table 

3.4), purchases at natural/gourmet and limited assortment stores had significantly higher 

composite HEI scores than conventional supermarkets. Purchases at dollar stores and all other 

stores had significantly lower composite HEI scores than conventional supermarkets. Purchases 

by households enrolled in SNAP did not have significantly different composite HEI scores from 

households that were not SNAP eligible, but purchases by households that were eligible for 

SNAP based on household income but not receiving SNAP had significantly lower composite 

HEI scores than households enrolled in SNAP. Shopping trips by participants with at least some 

college education had significantly higher composite HEI scores than shopping trips by 

participants with less than a high school education or with a high school education but no 

college. Smaller shopping trips (involving expenditures of less than $30) had significantly lower 

composite HEI scores than larger shopping trips (involving expenditures of more than $30). 

Shopping trips further from home had lower HEI scores than food shopping trips closer to home. 

Finally, purchases made using WIC or credit card had significantly higher composite HEI scores 

than purchases made using cash or check. Purchases made using SNAP did not have composite 

HEI scores that were significantly different from those made with cash or check. 
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NOTE: The below is based on the complete case 

(non-missing) total of n=10,789 

Composite HEI HEI 

Fruits* 

HEI 

Vegs* 

HEI 

Greens 

and 

Beans* 

HEI 

whole 

grains* 

Store Type (ref: Conventional Supermarket) 

Supercenter 

Discount/limited assortment 

Conventional club 

Natural/gourmet 

Dollar store 

Other 

 
-0.53 (-1.18, 0.12) 

1.41 (0.29, 2.53) 

1.58 (-0.04, 3.19) 

6.46 (4.72, 8.19) 

-2.25 (-3.32, -1.19) 

-3.37 (-4.35, -2.39) 

    

Age > 40 1.20 (0.65, 1.76)     
Sex (Female) 1.35 (0.73, 1.96)     
Race/ethnicity (ref: White [non-Hispanic]) 

Black/Af Am (non-Hispanic) 

Hispanic (any) 

Other (non-Hispanic) 

 
0.11 (-0.73, 0.95) 

2.02 (1.30, 2.75) 

2.21 (0.99, 3.44) 

    

SNAP/Income Status (ref: non-SNAP elig.) 

SNAP household 

SNAP eligible (non-household) 

 
-2.17 (-2.98, 1.37) 

-0.96 (-1.69, -0.24) 

    

Education (ref: Some college +) 
<HS 

HS/GED 

 
-0.81 (-1.59, -0.03) 

-1.07 (-1.70, -0.44) 

    

Own/lease car -0.32 (-1.14, 0.50)     

Weekend -0.10 (-0.64, 0.44)     
Week of month (ref: first [days 1-7]) 

Second (days 8-14) 

Third (days 15-21) 

Fourth + fifth (days 22-31) 

 
-0.19 (-0.92, 0.54) 

-0.26 (-1.03, 0.50) 

-0.33 (-1.06, 0.40) 

    

Amount spent <$30 -6.29 (-6.84, -5.75)     
Distance traveled from home (miles) -0.03 (-0.06, -0.01)     
Payment type (ref: cash or check) 

SNAP (any) 

WIC 

Debit card 

Credit card 

Other (TANF or gift card) 

 

 

 
0.27 (-0.62, 1.15) 

10.97 (9.02, 12.92) 

0.26 (-0.39, 0.91) 

1.68 (0.77, 2.60) 

-0.71 (-4.79, 3.38) 

    

 

Table 3.4. Results of Adjusted Multivariate GEE Models assessing predictors of HEI scores, 

displayed as effect (95% CI). 
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Abstract 

Monthly welfare programs such as the Supplementary Nutrition Assistance Program 

(SNAP) produce consistent cycles of expenditure and consumption amongst recipients.  Food 

insecurity and negative behavioral outcomes track these cycles.  This paper leverages new data 

from the USDA, the FoodAPS survey, and to answer a variety of questions related to these 

phenomena: Are consumption and expenditure cycles correlated?  Who bears the burden of food 

shortages at the end of each benefit month?   Does diet quality track food expenditure?  I find 

robust expenditure and consumption cycles in the FoodAPS data, but contrary to popular belief, 

they are only weakly correlated.  The youngest children are spared from cyclical food shortages, 

but school-aged children experience them when they are out of school.  Universal participation 

of the sample in school meal programs while in school (and the complete lack of participation in 

summer meal programs) suggests that these programs may mitigate a great deal of children’s 

food insecurity.  Diet quality declines over the course of the month, compounding the impact of 

fewer meals on health.  Food access issues cannot explain the identified cycles.  We interpret 

these findings as evidence consistent with a consumption-driven calorie crunch in which the 

expenditure cycle is a response to the previous month’s consumption deprivation. 
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Executive summary 

 

Many researchers have documented the fact that SNAP recipients experience expenditure 

and consumption cycles.  When benefits arrive there is a large spike in grocery expenditures and 

calories consumed.  Over the remainder of the month, expenditure and consumption consistently 

decline.  Reports of food insecurity follow these cycles.  Crime and school misbehavior also 

track these cycles, encouraging research into their causes, consequences, and potential solutions. 

 This paper leverages a new data source, the USDA’s FoodAPS Survey, to examine a 

variety of issues related to expenditure and consumption cycles.  Most notably, these are the first 

data to offer simultaneous expenditure and consumption diaries.  Often, researchers assume 

expenditure and consumption cycles to be a single phenomena, however this has gone untested 

until now.  Additionally, the FoodAPS measures consumption at the meal level, making this the 

first paper to measure consumption cycles in terms of missed meals. 

 We find evidence of large and significant cycles in both expenditure and consumption in 

the FoodAPS data.  Expenditure decays by roughly 4.6% per day over the course of the benefit 

month.  Consumption falls by roughly 0.7 daily meals from the first day to the last day of the 

benefit month, and this measurement is robust to a new technique that uses the non-SNAP 

households in the FoodAPS as a control group.  However, the correlation between expenditure 

and consumption cycles is much weaker than expected.   

 Children do not experience consumption cycles as severely as adults (or in many cases, at 

all).  This is most consistently true for children under five years old, indicating that parents 

shelter the most vulnerable for shortfall.  However, school-aged children do experience 

consumption cycles when school is out of session.  This suggests that school meal programs may 

play a vital role in limiting cyclicality in food insecurity, given the near universal participation of 
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the children in SNAP households.  Primary school students appear to be the most affected by 

school breaks. 

 Because the meal consumption measures do not capture the contents of meals, a decrease 

in meal frequency could theoretically be ameliorated by an increase in meal quality, however this 

does not appear to be the case.   Diet quality decreases over the course of the benefit month, 

according to self-reports, measurements of protein-to-carbohydrate ratios, and a variety of other 

measures.   

 It is commonly suggested that poor local food availability could be the root cause of 

expenditure cycles, which in turn cause consumption cycles.  Using the geographic data in the 

FoodAPS, we find that travel time to the grocery store is not predictive of a more severe 

expenditure cycle.  

This paper is designed to advance our understanding of the calorie crunch using the new 

FoodAPS data.  The results suggest that summer meal programs for children could fill an 

important gap in food sufficiency at the end of the benefit month and the access-based 

explanations of these phenomena are perhaps less plausible than consumption-based 

explanations like self-control and bargaining failures.
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Introduction 

In a cross section of households receiving food benefits from the Supplementary Nutrition 

Assistance Program (SNAP) in 2011 and 2012, roughly 61% were food insecure, 31% were very 

food insecure and 25% of households had food-insecure children (Mabli et al.2013).  While there 

is substantial work devoted to estimating the impact of program participation on nutritional and 

health outcomes, much less is dedicated to understanding what determines food insecurity within 

the program.1  The literature on within-month expenditure and consumption cycles (the “calorie 

crunch”) addresses this to some degree, but does not directly estimate the changing frequency of 

missed meals, one of the core consumption markers that defines food insecurity.  This paper 

utilizes a new data source, the USDA’s FoodAPS survey, to expand our understanding of the 

calorie crunch in a variety of ways.  Most notably we measure consumption trends using changes 

in missed meals over the course of the month and demonstrate that its incidence within the 

household likely depends on the operation of school meal programs.   

Consumer expenditure and consumption-smoothing failures that stem from benefit timing are 

typically studied to evaluate theory rather than because of their direct impact on well-being.  

Shapiro (2005), Hastings and Washington (2010) and Smith et al. (2016) use SNAP benefit 

receipt to examine present-biased discounting, firm price responses and income fungibility, 

respectively.  This may be due in part to a structural calibration exercise in Shapiro (2005) that 

suggests very small welfare losses from the calorie crunch.  Recent work on the behavioral 

consequences of benefit timing puts a spotlight back on the direct impact of cyclicality in food 

consumption.  Foley (2011) shows that crime in areas with highly time-concentrated 

disbursements of welfare (including SNAP) increases over the benefit month.  Seligman et al. 

                                                            
1 See Bhattacharya and Currie (2001) and Hoynes and Schanzenbach (2009) on food insecurity.  See Devaney and 

Moffitt (1991) on nutritional intake.  See Currie and Cole (1991), Currie and Moretti (2008), Almond et al. (2011) 

and Kreider et al. (2012) on child health.  See Hoynes et al. 2016 on long-run outcomes. 
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(2014) find that hypoglycemia hospital admissions are more common at the end of the month in 

low-income communities, and Gennetian et al. (2015) show that school disciplinary actions for 

middle and high-school students in SNAP households in Chicago increase by 51% from the first 

to the last week of the benefit month.  Given what appear to be significant consequences of food-

budget exhaustion, and the high rates of food insecurity within SNAP, we need a better 

understanding of what happens within households as resources run out and why.2   

The FoodAPS survey from the USDA allows us to investigate a variety of features of the 

calorie crunch for this first time.  First, we estimate the calorie crunch in terms of missed meals.  

This extends the benefit-timing literature to directly inform food insecurity.  Second, we use the 

targeted sample of eligible and near-eligible non-participants in order to construct the most 

robust estimates of the calorie crunch to date.  Using these individuals to difference out calendar-

day expenditure and consumption means that other cyclical income sources that are roughly 

correlated with SNAP receipts and specific to a low-income population are controlled for.  Third, 

we use simultaneous household expenditure and meal consumption logs to determine whether 

the failure to smooth consumption and expenditure are related phenomena.  Given past work 

using expenditure (Hastings and Washington 2010, Castner and Henke 2011, Smith et al. 2016, 

Kuhn 2016) and consumption (Wilde and Ranney 2000, Shapiro 2005, Todd 2015), verifying 

this relationship is important.  Fourth, we decompose the consumption impacts of benefit timing 

within households by age and gender.  Are children spared the worst or do adults and school 

meal programs shelter them?  Are mothers or fathers the ones who feel the impacts of food 

shortfall?  Finally, we assess a common casual suggestion about the calorie crunch: that it is a 

symptom of poor food access.   

                                                            
2 Food insecurity per se matters for reported health quality in both adults and children and for specific health 

outcomes (Gundersen and Kreider 2009, Gundersen and Ziliak 2015). 



Food APS Research at UKCPR – Page 344 
 

 We find strong declines in both expenditure on food and consumption of food in the 

FoodAPS data.  The meal consumption estimates, unique to this paper, indicate a loss of roughly 

3 meals per benefit-month in our most conservative specification with estimates up to 12 meals 

per benefit-month in others.  This estimate is per individual, and is relative to the counterfactual 

of constant meal consumption at the level established on the first day of the benefit month.  Both 

expenditure and consumption estimates are robust to using eligible and near-eligible non-

participants as a control group.  Expenditure and consumption cycles are correlated within 

households, but only weakly.  This is evidence that consumption cycles are the primitive 

phenomena, and they may sometimes feed back into expenditure declines, not the other way 

around.  Indeed, we find no relationship between local food access and consumption or 

expenditure trends.  Men and women experience similar consumption cycles, with dual-parent 

households doing better overall than single parents.  We find that young children experience 

almost no calorie crunch in terms of missed meals.  Primary school-aged children only 

experience a calorie when school is not in session, indicating that school meal programs play a 

valuable role in smoothing consumption.  This is not true for older children. 

Many of the 18 questions the USDA uses to evaluate food insecurity relate to missed meals 

(USDA 2015).  For example, question 4 reads, “In the last 12 months, did you or other adults cut 

the size of your meals or skip meals because there wasn’t enough money for food?”  Question 9 

reads, “In the last 12 months did you or other adults ever not eat for a whole day because there 

wasn’t enough money for food?”  And question 16 reads, “In the last 12 months, did any of the 

children ever skip a meal because there wasn’t enough money for food?”  By showing that the 

calorie crunch is a robust phenomenon by this measurement, we wish to emphasize that the in all 

likelihood, the food insecure SNAP households are also sometimes food secure SNAP 

households and vice versa.  In fact, we find in the FoodAPS that the likelihood of being 
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categorized as having “very low food security” is increasing over the course of the benefit month 

despite the retrospective framing of the food security questionnaire.  Targeting insecurity 

associated with benefit timing means re-thinking disbursement timing and technique in addition 

to increasing benefit amounts (which Todd (2015) demonstrates is effective in mitigating the 

calorie crunch).  Additionally, our results indicate that interventions targeting the point of 

consumption may be more effective that interventions targeting the point of sale. 

The remainder of the paper is organized as follows.  Section 2 describes the data and 

methodology. Section 3 presents the results and Section 4 concludes. 

Data and methods 

The USDA’s National Household Food Acquisition and Purchase Survey (FoodAPS) 

surveyed 4826 U.S. households between April 2012 and January 2013.  1581 households were 

SNAP participants, 1312 were eligible or near-eligible non-participants with incomes less than 

185% of the poverty threshold and 1933 had incomes greater than 185% of the poverty 

threshold.  Our primary analysis is restricted to households receiving SNAP benefits, but we also 

use the eligible and near-eligible non-participants as a control group in some specifications.  

Households reported their spending on all food items (both for at-home and away-from-home 

consumption) and meal consumption for a one-week period following an initial interview.  The 

initial interview collected in-depth background information both at the household and individual 

levels.  Geographic information relating home locations to store location is also included in the 

data. 

Understanding survey timing is critical for our sample construction.  The in-depth initial 

interview occurred before the households completed either their expenditure or meal diaries.  We 

call the initial interview date day 0.  Days 1 to 7 following the initial interview are diary days.  

On day 0, households reported the calendar date on which they last received SNAP benefits.  A 
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total of 1609 households reported a past SNAP receipt.  There were no expenditures logged for 

95 of those households.  123 did not match to any meal diaries and 44 households had blank 

meal diaries for all members. We keep only households for which we have matched expenditures 

and consumption.  133 of the matched households either reported or were confirmed to no longer 

be in the program.  80% of the remaining household-days require no adjustment based on last 

reported SNAP receipt: they fall within 30 days following the report and the reported 

disbursement occurred on a feasible day.3  For households with missing last receipt reports and 

infeasible last receipt reports, we turn to administrative data that the USDA matched to 

households in the sample.4  We only use disbursements on a feasible date that occurred no later 

than the first day of the diaries.  This nets an additional 101 households.  Finally, because rates 

of program churn are high (Mills et al. 2014), we observe considerable movement out of SNAP 

in the data and we identify benefit timing effects precisely based on the day of benefit receipt, we 

do not impute a more recent date of SNAP receipt that would contradict a household’s report of 

their last benefit receipt.  We impute days since receipt when it does not contradict a report.5  

This leaves us with a final sample of 1167 SNAP households with 8169 diary days and 25,571 

diary-member, ranging from zero to 30 days since benefit receipt. 

Following Shapiro (2005) and Kuhn (2016), we wish to estimate expenditure and 

consumption as a function of days since benefit receipt.  Each state has its own SNAP 

disbursement schedule, with most states spreading it out over the beginning of the month.  Figure 

                                                            
3 No disbursements arrive on the 24th or later.  Additionally, the 30-day requirement is adjusted down to a 29-day 

requirement when SNAP was last disbursed in a month with 30 days, a 28-day requirement for months with 29 days 

and a 27-day requirement for months with 28 days. 
4 This follows the USDA’s approach or prioritizing reports over the administrative data due to match uncertainty. 
5 For example, imagine that a household reports a last benefit receipt of April 17th, 2012 during their initial interview 

on May 15th, 2012.  May 16th, 2012, the first day of the diary, is 29 days since receipt.  The second day of the diary 

is 30 days since receipt, which gets reset to 0 days since receipt since it does not contradict the report during the 

May 15 interview.  In some consumption specifications, we will exclude these imputed benefit households.  This is 

based on what appear to be very different consumption patterns from non-imputed benefit households, conditional 

on days since supposed receipt. See Section 3.2 for more detail. 
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1 shows the distributions of SNAP receipt calendar dates in our sample.  There is a large spike 

on the first of the month followed by a steady flow over the next 10 days, with a gradual trail off 

from there.  No state disburses SNAP after the 23rd of the month.  Since disbursement rules 

based off last names, social security numbers and benefit ID numbers, there are no observable 

differences across households based on time of receipt (Kuhn 2016).  However, given the 

bunching at the beginning of the month, it is generally true that SNAP receipt is correlated with 

other early-month occurrences like bills and income.  For this reason, we use household and 

individual fixed-effects models in addition to OLS and similar approaches.  Also, we take a 

novel approach in Section 3.1 by using the average expenditure of our sample of eligible and 

near-eligible non-participants to difference out the calendar-day expenditure of SNAP 

participants in the sample.   

In general, our expenditure models will take the form 

𝑦ℎ,𝑡 =  𝑓(𝛼ℎ +  𝛽𝑑𝑠𝑠ℎ,𝑡 +  𝑋ℎ,𝑡
′ Γ) +  𝜖ℎ,𝑡 (1) 

where 𝑦ℎ,𝑡 is household h’s expenditure on food on diary day t, 𝛼ℎis the intercept term, which 

may be restricted to be the same across all households depending on specification, 𝑑𝑠𝑠ℎ,𝑡 is the 

number of days since SNAP receipt for household h on diary day t, and 𝑋ℎ,𝑡 is a vector of days-

since-receipt control variables, including week of calendar month, a weekend indicator variable 

and a indicator variable for whether the household was called by a survey representative to 

confirm their recording of daily expenditures.6  𝑓(∙) is usually the identity function, yielding a 

linear model, but we will use some other specifications as well, most notably Poisson regression. 

 Our consumption models are slightly different because the data are individual-specific.  

For individual i,  

                                                            
6 These are also indexed by h because the mapping from t to days since SNAP depends on the household. 
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𝑐𝑖,ℎ,𝑡 =  𝑓(𝛼𝑖 +  𝛽𝑑𝑠𝑠ℎ,𝑡 + 𝑋ℎ,𝑡
′ Γ) + 𝜖𝑖,ℎ,𝑡 

where 𝑐𝑖,ℎ,𝑡 is a measure of consumption for individual i, in household h on diary day t.  

Depending on specification, 𝛼𝑖 may be restricted to be the same for all individuals, all 

individuals in household h or first-differenced out.  We choose to first-difference the data for our 

individual fixed-effect specifications because serial correlation in the error term is likely.  

Standard errors are always clustered at the household level. 

 Expenditure data are collected at the item level and transaction levels in the FoodAPS.  

To construct daily household expenditure, we aggregate all food expenditures on a given diary 

day.  This includes groceries for at home consumption and meals purchased away from home 

(unless specified otherwise).  While SNAP funds cannot be used for many of these purchases, 

our goal is to capture total food expenditure and consumption regardless of budget source.  

Consumption data are collected at the individual level on each diary day.  Breakfast, lunch, 

dinner and three potential snacks (am, pm and evening) can be reported as either consumed or 

not.  We aggregate daily meal consumption by summing the breakfast, lunch and dinner 

indicators to avoid worrying about within-day across-meal substitution for any given meal.  In 

the Appendix, we do present results for each meal individually, snack consumption and 

examining entire days without any consumption.   

Results 

We present the results in five sections.  First, we present the estimates of expenditure cycles 

amongst SNAP recipients in the FoodAPS data.  Second, we estimate consumption cycles and 

compare them within-household to the expenditure cycles.  Third, we explore the incidence of 

food shortfall by age and gender.  Fourth, we investigate whether the nature of consumption, in 

terms of nutritional quality, changes over the month in addition to quantity.  Finally, we explore 
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the relationship between local food access and expenditure and consumption trends. 

Expenditure cycles 

We find substantive and statistically significant expenditure cycles in the FoodAPS.  Our 

primary specifications model the expenditure decline linearly, using OLS and a first-differenced 

fixed-effect approach in columns (1) and (2) of Table 1.  We also present fixed-effect Poisson 

regression estimates in column (3) because expenditure decay over the full benefit months 

appears exponential (see Figure 2, Panel A).  Linear models should work well when the day 

benefits arrive is removed and will be comparable to our preferred approach to the consumption 

data.  Estimates without that day are in columns (4), (5) and (6).  In Appendix Table A1, we 

consider a variety of alternative specifications, including a Tobit model for expenditures 

censored below at $0, a mean-differenced fixed-effect model, a standard Poisson model, as well 

as linear probability, first-differenced linear probability, Probit and conditional-Logit models of 

whether non-trivial expenses are recorded in Appendix Table A2.  All of the estimates identify 

significant negative effect days since benefit receipt. 

 From the first to the last day of the benefit month in a 31-day cycle, average total food 

expenditures fall roughly from $94 to $19 (the median decreases from $44 to $3).  The linear 

estimate of the per-day decline is $0.56 per day.  Poisson regression, which should fit this sample 

better, indicates a decline of roughly 4.1% per-day.  Much of the decline comes from the spike in 

spending on the day of receipt: average spending on the second day of the benefit month is 

roughly $38.7 Removing that day cuts the magnitude of the linear estimate considerably, but a 

steady and significant decline of $0.23 per day remains. The assumption of linearity is more 

appropriate for this sample (see Figure 2, Panel B).  Food for home consumption only follows a 

                                                            
7 This is why the estimate of the daily decline differs so considerably from the slope of the line connecting the first 

data point in the benefit month to the last day in the benefit month.  Removing the first 2 days of the month 

reconciles this. 
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similar path at lower levels (results in Appendix Table A3).   

These effects of the benefit cycle operate on both the intensive and extensive margins, 

but the extensive margin effects are almost entirely concentrated in the first few days of the 

benefit month (see Figure 2, Panel C).  75% of households report non-trivial expenditures on the 

day that benefits arrive.  This falls to 66% on the day after benefits arrive and 56% by the end of 

the month.  This trend is more dramatic when we restrict attention to purchases for food-at-home 

(FAH): 62% shop on the day benefits arrive, 46% shop on the day after they arrive, and only 

35% shop on the last day of the cycle.  Non-trivial expenditures are defined as spending at least a 

dollar on food.   

For robustness, we take a unique approach that utilizes non-SNAP households in the 

FoodAPS.  We difference the expenditures of SNAP households from those of non-SNAP 

households on the same calendar day.  For example, if a SNAP household reports $20 of 

expenditures on May 15, 2012, and the average expenditure among non-SNAP households on 

May 15, 2012 is $30, we replace the SNAP household’s observation with -$10.  We limit the 

non-SNAP households in this sample to those with income less than 185% of the federal poverty 

level.8  Our estimates barely change with this procedure.  Average SNAP household spending is 

about $74 greater than non-SNAP household spending on the day of receipt and about $5 less on 

day 30 of a 31-day cycle.  The linear estimate of the downward trend in $0.55 per day in this 

specification with the full sample and $0.22 with day 1 removed.  Full results are presented in 

Appendix Table A4.  See Figure 2, Panel D for the full path of the difference over the benefit 

cycle.  Given that food benefit cycles are not perfectly randomly distributed with respect to other 

income and benefit receipts (see Figure 1, which demonstrates that disbursements are more 

                                                            
8 This reduces our sample size slightly, losing 4 SNAP households and 55 household-days on which we have no 

non-SNAP observations. 
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common near the beginning of the month), this procedure should increase confidence that the 

observed cycles are truly driven by the SNAP cycle.    

Consumption cycles 

Consumption cycles as measured by meals are unique to this study; we have no 

benchmark for assessing the magnitude of the decline in likelihood of consuming a meal over the 

course of the month. It is important to remember that this is a coarse measure since we do not 

observe the contents of meals.   Estimates with meal consumption measured at both the 

household and individual level are presented in Table 2.  To model the outcome variable of the 

number of meals (breakfast, lunch or dinner) eaten by in individual in a day, we use an OLS 

specification and a first-differenced fixed-effect specification since a linear model should fit 

these data well (see Figure 3).  We also utilize a Tobit model for censoring at 0 and 3 meals per-

day.  Since calories are relatively substitutable within a day, we prefer to study the sum of meal 

indicators rather than isolating any meal in particular.  The coefficients represent the per-day 

decline in the number of meals eaten by an individual in columns (3)-(6), and in the case of the 

household-level estimates in columns (1)-(3), the decline in the average number of meals eaten 

by an individual within the household. Standard errors are clustered at the household level in all 

specifications.   

There is a significant decline in number of meals eaten over the course of the month.  The 

daily decline in number of meals eaten is an intuitive metric for interpreting the regression 

results, but they do not properly convey the big picture.  The smallest estimate in Table 2, Panel 

A is a decline of 0.005 meals per day.  This extrapolates to 0.15 fewer meals consumed on day 

30 of a benefit month than day zero.  Alternatively, this corresponds to about 2.33 fewer meals 

eaten over the course of the month than if consumption remained constant at its day 0 level.  The 

largest estimate in Table 2, Panel A is a decline of 0.027 meals per day.  This is about 0.81 fewer 
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meals on day 30 than day 0 or roughly 12.56 fewer meals eaten over the course of the month.  In 

Appendix Table A5 we break this decline up by meal, consider the likelihood of going an entire 

day without a meal, and snacks. The likelihoods of eating breakfast, lunch and dinner all fall 

significantly over the course of the month, with roughly similar magnitudes.  The probability of 

going an entire day without a meal is significantly increasing over the month, and the number of 

snacks eaten per day declines significantly, with a magnitude similar to the decline in the number 

of meals eaten. 

We also present estimates of the consumption trend with imputed data excluded. 

Specifically, observations that are assigned a days-since-receipt value based on a receipt of 

benefits over a month in the past are excluded from the estimates in Table 2, Panel B.  For 

example, if a household taking the initial survey on May 15th reported last receiving food 

benefits on April 17th, we would have a direct observation of 29 days since benefit receipt on 

May 16th, the first diary day.  We would then have 6 imputed observations of 0-5 days since 

benefit receipt from May 17th to May 22nd, assuming that benefits arrived on the same calendar 

day (as they should) each month.  Despite verification of program participation in the sample, 

estimates of program churn (movement in and out of SNAP) are high: a 2011 study of SNAP 

participation in six states by Mills et al. showed that 17-28% of participating households had 

exited and re-entered SNAP in the last 4 months.  Furthermore, Figure 3 demonstrates that 

reported consumption on days imputed at the beginning of the benefit month is very different 

than reported consumption on direct observations on the same days of the benefit month.  The 

estimates using the non-imputed sample are larger in each specification than those using all data, 

but the magnitudes are not substantially different. 

An advantage of having simultaneous expenditure and consumption reports from the 

same household is that we can ask whether two empirically-verified phenomena –expenditure 
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cycles and consumption cycles— are related to one another as is commonly assumed.  To do 

this, we estimate benefit-month trend coefficients for every household in the sample using both 

food expenditure and meal consumption and then estimate their correlation.  Because the 

expenditure data is at the household level, we use meal consumption data aggregated to the 

household level as well.  Given only seven observations per household, the estimates are noisy, 

and we present both trimmed and untrimmed estimates.  Expenditure estimates are truncated at -

$10 and $10/per day and consumption estimates are trimmed at -0.1 and 0.1 average meals per 

day.  Results are in Table 3, with both trend variables standardized.  As expected, there is an 

overall positive relationship between expenditure and consumption trends within households, 

however it is weak.  Using either the whole sample or the trimmed sample, we find that a 1 

standard deviation increase in the expenditure trend is correlated with about a 0.05 standard 

deviation increase in the consumption trend (p = 0.118 and p = 0.160, respectively).  We also 

implement a specification that allows for a changing correlation between consumption and 

expenditure trends over the course of the month.9  Oddly, the whole sample and trimmed sample 

yield opposing results.  In the full sample, we find a positive and significant correlation that 

emerges at the end of the month: a one standard-deviation increase in the expenditure trend 

correlates with a one-tenth of a standard deviation increase in the consumption trend in week 4 of 

a benefit month (p = 0.006).  In the trimmed sample, we find a positive a significant correlation 

at the beginning of the month --a one standard-deviation increase in the expenditure trend 

correlates with a 0.15 standard deviation increase in the consumption trend in week 1 of a benefit 

month (p = 0.021)—that decays to zero by week 4.   

 In summary, we strongly replicate the findings of prior literature on the failures to 

smooth expenditure and consumption over the SNAP benefit cycles.  We find larger magnitudes 

                                                            
9 We assign a household to a week of the month based on the first day of their seven-day diary. 
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of expenditure cycles than other work, although this varies depending on the specification.  We 

are the first to identify consumption-smoothing failures as measured by missed meals and find 

strong and significant downward trends over the benefit month.  This is consistent with Shapiro 

(2005) that identifies a decline in caloric intake.  These two phenomena are correlated within 

households, but not as strongly as expected.  Additionally, we leverage the targeted sampling of 

the FoodAPS to show that both types of trends are robust to being measured as calendar-day 

differences from the average non-SNAP household expenditure and consumption.  Given that 

SNAP disbursements are not uniformly distributed with respect to other income sources, this is 

an important robustness check that has been missing from the literature.   

Incidence of food shortfall within households 

This section is devoted to decomposing the consumption findings from Section 3.2 within 

a household.  Are children more vulnerable because they rely on others for meals or are the 

sheltered by well-meaning parents?  Perhaps school meal programs protect kids directly.  Are 

women in dual-adult households more vulnerable because they must bargain with a spouse?  

Kuhn (2015) finds that household composition determines, in part, the severity of the 

expenditure trend over the SNAP month.  Households will more young children and dual-adults 

exhibit the strongest declines.10  A proposed explanation for this finding is that the aggregation 

of preferences within the household and bargaining between decision makers can lead to 

dynamically inconsistent behavior (Jackson and Yariv 2014, Hertzberg 2012).   Even if EBT has 

ameliorated some of the problems associated with food purchasing decisions (Kuhn 2015), the 

intra-household allocation of purchased food remains an important issue.  The dynamics of this 

allocation over the benefit cycle have not been investigated. 

 

                                                            
10 This is true prior to the implementation of EBT only.  After the introduction of EBT, much of this heterogeneity is 

gone.  
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Age differences 

We start by examining consumption cycles by age.  Minors are split into three six-year 

age buckets.  Indicators for each group are interacted with the days since benefit receipt variable.  

Table 4 shows the results of adding these interaction terms to regressions of the same form as 

columns (4) and (6) of Table 2.  We also implement a household fixed-effects specification that 

allows within-household differences in trends to more directly contribute to our estimate of 

differential trends by age.  First-differencing the data generates trend estimates from individual 

variation, and these trends are compared across age category with no regard to household; every 

adult is compared with equal weight to every child 0-5 years old, for example.  The household 

fixed-effects allow within-household differences to inform the age parameters in the model such 

that a child’s difference in trend from their parent matters more than a child’s difference in trend 

from any random adult.  Results are presented in Table 4 for both the full sample and non-

imputed data only. 

There are level differences in consumption favoring children, but more interestingly, we 

find that the decline in meal consumption is much less dramatic for the youngest children.  While 

our estimate of the consumption trend for adults varies considerably across specifications, the 

interaction between the trend variable and an indicator for age < 6 is always positive and 

comparable to the negative coefficient on the trend itself.  The sum of those coefficients is never 

significantly different than zero.  There is some evidence that children 6-12 and 12-17 years-old 

experience less severe consumption declines, but this is sensitive to specification.  In Appendix 

Tables A6, A7 and A8, we present results separately by meal, finding that breakfast consumption 

most closely mimics the pattern of results found for all meals pooled. 

To generalize from our discrete age cutoffs, Figure 4 presents the average daily decline in 

the number of meals consumed as it varies by according to a 5th order polynomial in age.  This is 
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implemented using the OLS specification on the full sample.  The graph is truncated at age 60, 

above which the standard errors increase considerably.  We estimate a positive consumption 

trend for individuals 11 and under, significant at the 5% level for kids 8 and younger.  The trend 

is negative for individuals older than 11, significant at the 5% level for those 15 and older. 

Figure 5 shows the evolution of the difference in average daily meal consumption from its level 

at the beginning of the benefit month.  We group all kids under 12 and all individuals over 11 

based on Figure 4.  Furthermore, we smooth the data using a 5-period moving average before 

differencing it from the day 2 moving average value.  Both groups experience upward trends in 

consumption over the first week of the month.  Starting in the second week of the, consumption 

begins a prolonged decline for individuals 12 and older and remains steadily above its initial 

value for kids under 12.  The fourth week of the month brings a steep decline for everyone, 

retuning young kids to about the level they started the month at and pushing older individuals 

down to 0.15 meals per day below that value.   

We believe there are two primary mechanisms through which these age differences could 

operate: parental sheltering of kids and school meal provision.  In the case of the first 

mechanism, we would expect to see adults in households without kids exhibiting less severe 

consumption declines.  However, this comparison is confounded by selection into parenting.  If 

parents tend to be more patient and effective budgeters than non-parents in the sample of SNAP 

participants, we would expect to see the opposite.  Our estimate of the effect of days since 

benefit receipt on meal consumption for adults in households with no children is significantly 

larger in magnitude than for adults in households with kids (-0.004 meals per day for adults in 

households with kids and -0.012 meals per day for adults in households without kids, p = 0.060).  

This is consistent with parents being more patient than non-parents. When we re-estimate all the 

models in Table 4 with the sample limited to households with kids, we get slightly weaker 
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estimates of the age-group interactions because of this change in the adult population.  Overall, 

all we can say with respect to the sheltering hypothesis is that whatever sheltering may be 

occurring is not large enough to overwhelm selection effects.   

To investigate the role of school meal provision, we stratify our sample based on whether 

school is in session at the time of the meal diary. School meal provision cannot fully explain the 

differential trends by age that we see because the most persistent differences are for kids who are 

mostly too young for school.  Figure 4 shows a significantly positive consumption trends for kids 

10 and under, and while the effect is not consistent across specification, column (1) of Table 4 

does show a sizeable differential trend for kids from 6 to 11, and columns (1) and (4) show 

differential trends for kids from 12 to 17.  We do not use measures of school breakfast and lunch 

program participation, cost and frequency because they exhibit almost no variance within our 

sample of SNAP participants.11  However, 36.3% of the school-aged children in our sample are 

on break from school, and participation in summer programs with meals is very low.  

We classify an entire household as either in school or on break to allow adults’ 

consumption trends to differ as well.  This eliminates households without any school-aged 

children, meaning that our estimation sample for the youngest children is very different.  The 

sample is split according to school status; we estimate our model on each sample and then test 

the equality coefficients across samples.  Additionally, we re-construct the age groups to 

represent school types:  not school age (< 5), primary school (4 < age < 11), middle school (10 < 

age < 14) and high school (13 < age < 18).12  For this comparison to inform the impact of school 

in session kids’ meal trends, it must be that other factors associated with being out of school are 

                                                            
11 93.8% of children in our SNAP sample receive breakfast at school, 96.6% receive lunch at school, almost all for 

free.   
12 Because data on completed/upcoming grade is not recorded for students who are on break from school, we use 

this age classification rather than a direct observation of school type. 
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not driving differential consumption over the benefit month.  Since the variation we use is almost 

entirely the comparison of summer to the rest of the year, this is a non-trivial concern.  Changing 

weather patterns or seasonal work could affect the way people shop and eat.  Results using the 

OLS specifications from columns (1) and (4) of Table 4 are presented in Table 5.  Reassuringly, 

adult consumption trends are not more extreme when the kids are out of school.  We find that 

primary school-age kids indeed experience a shift from doing better than adults when school is in 

to doing worse than adults when school is out.  The OLS specifications in columns (1) and (2) 

show a statistically significant difference between the interaction terms associated with primary 

school across school status.  The limited-sample estimates show a similar reversal, but the 

difference is not significant.  We do not find evidence of differences by school status for middle 

school and high school students. 

 If school meal programs do explain the difference by school break status for primary 

school students, why aren’t there effects for middle and high-school students?  As kids get older, 

they may experience more social stigma associated with participating in meal programs.  They 

may also prefer to use their free time before school and during the lunch break for other 

activities.  The FoodAPS measures the number of days per week children get complete lunches 

and breakfasts at school in addition to whether their schools offer breakfast and lunch.  While 

SNAP-participating children essentially all have access to these programs, there is some 

variation in the reported weekly usage.  We regress lunch and breakfast program usage on 

indicators for middle and high school age, with primary school age as the omitted category.  

High-school students get 0.26 (S.E. = 0.124, p = 0.040) fewer lunches per week and 0.68 (S.E. = 

0.179, p < 0.001) fewer breakfasts per week than primary school students.  We do not find any 

differences for middle school students. 
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Gender differences 

We follow our approach to age differences by interacting gender with the days since 

benefit receipt variable.  Results are in Table 6.  If women are disadvantaged in a household 

bargaining model that binds when resources are scarce, we should expect to see gender 

differences in consumption trends emerge when we limit the sample to households with multiple 

adults (in this case, defined specifically as a spouse or unmarried partner to the primary 

recipient).  However, given the finding in the previous that are household-level differences 

associated with having kids that are likely due to selection, it is reasonable to believe that similar 

differences exist based on relationship status.  Indeed, we find evidence that women in dual-adult 

households experience less severe consumption declines (comparing columns (1) and (4) of 

Table 6).  Adding a household fixed effect or first-differencing (columns (2) vs. (5) and (3) vs. 

(6) of Table 6) mitigates this difference, indicating that dual-adult households do better overall.  

Differences across gender are limited to the first-differenced models in which we find evidence 

that men in dual-adult households experience more severe consumption declines. 

 If parental sheltering is responsible for some of the attenuated consumption decline for 

kids, there is scope for differential investment by child gender.  However, specifications that 

feature interactions between gender and the child age groups used earlier reveal no consistent or 

significant evidence of differences in consumption trends by gender. 

Consumption quality 

Our measure of consumption captures the consequences of benefit cycles only when they 

amount to lost meals.  Reductions in the amount and quality of food would mean that the 

consumption cycles are even more harmful than our estimates indicate.  Given that the 

proportional decline in expenditure is much larger than consumption, we can say that the ratio of 

expenditure to number of meals consumes is also falling over the course of the month.  However, 
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this depends on the assumption that expenditures are converted into meals relatively quickly 

instead of slowly through the consumption of non-perishables.  We obtain some direct evidence 

of changing diet using self-reported data from the initial survey on diet quality, the perceived 

costs of eating healthy and fruit/vegetable sufficiency.  The likelihood of reporting very low 

adult food security increases by 4% over the course of the benefit month (p = 0.331).  Self-

reported own diet quality decreases by 0.12 standard deviations (p = 0.243) over the course of 

the benefit month.  The likelihood of reporting sufficient fruit and vegetable consumption 

decreases by about 6% over the benefit month (p = 0.180). 

Another way of assessing meal quality is to examine whether there are changes over the 

month in the types of food purchased for consumption at home.  For example, more costly meats 

at the beginning of the month might be replaced by cheaper, less nutritious carbohydrates at the 

end of the month.  Those carbohydrate foods are likely to be non-perishable and may be 

purchased at the beginning of the month as well.  Therefore, we consider the time-path of the 

relationship between different food categories over the course of the month.  Our first 

comparison is between protein and carbohydrates.13  We feel that this comparison gets directly at 

the basis of a meal: chicken or pasta?  This is measured by subtracting carbohydrate expenditures 

from protein expenditures on a given day and dividing by the total expenditures on food for 

home consumption on that day.  Therefore, this is a measure of basket composition, conditional 

on grocery shopping.  Shopping days with no reported expenditure on either protein or 

carbohydrate goods are excluded.  We also consider substitution in accompanying foods: are 

fruits and vegetables at the beginning of the month replaced by snacks and sweets at the end of 

the month?  Finally, we pool food categories into “good” (milk and dairy, protein, and fruits and 

                                                            
13 Specifically comparing items classified as “proteins” to “grains” as characterized by the USDA. 
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vegetables) and “bad” (grains and snack and sweets) groups.  We regress these measures on days 

since benefit receipt in specification akin to those in Table 4.  Results are in Table 7. 

 Purchases of protein goods as a fraction of total expenditures fall relative to carbohydrate 

purchases as a fraction of total expenditures over the course of the month, however the 

magnitude is small.  On day zero, households that make a purchase of either food type spend 

about 17% more on protein goods.  This falls to about 10% by the end of the benefit month.  

Estimates for the comparison between combined milk and dairy, protein and fruit and vegetable 

expenses, and combined carbohydrate and sweet and snack expenses are very similar.  We do not 

observe a substitution over time between fruits and vegetables and sweets and snacks. 

 These broad categories don’t fully capture the dynamic of a household adjusting its 

purchasing patterns to reflect a shrinking budget.  We can leverage the detail of the FoodAPS to 

use the energy content and weight of the items purchased instead.  With resources running out, 

we expect to see an increase in the calories per dollar of food purchased in order to obtain 

sufficient energy and an increase in grams per dollar purchased in order to satiate appetites.  We 

find suggestive evidence of this.  kCal per dollar spent on food is estimated to increase by 

roughly 20% over the course of the benefit month, from 409 kCal/$ to 492 kCal/$ (p  = 0.130).     

Additionally, edible grams of food per dollar increases about 37% from 304 g/$ to 417 g/$ over 

the benefit month (p = 0.001).14  These changes are likely linked to a shift away from protein 

towards carbohydrates over the course of the month.15  Within carbohydrates, purchases shift 

away from food with dietary fiber content over the course of the month, towards food with a 

                                                            
14 Therefore, the caloric density by weight is actually going down over the course of the month because the growth 

rate of g/$ exceeds that of kCal/$.   
15 The ratio of protein grams less carbohydrate grams to total grams purchased declines by 6% over the course of the 

month (p = 0.205).  There do not appear to be substitutions towards or away from fats over the course of the month. 
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higher sugar content.16 

Food access 

A common suggestion is that the calorie crunch among benefit recipients might be a direct 

reflection of transactions costs in shopping.  If SNAP participants are not located near grocery 

stores, then planning a large shopping trip to coincide with benefit arrival seems natural.  Later in 

the month, a dwindling supply of stored food combined with poor local options for fresh food 

results in reduced consumption.  If different types of households live nearby or far away from 

grocery stores, this could be responsible for the systematic differential severity in consumption 

declines found in this paper and Kuhn (2016).  The FoodAPS has precise information on 

household-specific travel times to their primary grocery stores that can be used in conjunction 

with reported travel times.  We use this information to explore the role that food access could 

play in our results. 

All households report their travel time to their primary grocery store.  For most households, 

the location of this store and the respondent’s home address are used to calculate driving and 

waling travel times.  The match between reported travel time and calculated travel time 

according to the reported transportation mode is good, although it is not perfect.  While we use 

households reported travel times, because their perception of the time costs of shopping are what 

matters for their shopping decision, we drop reported times that are in the extremes of the 

distribution of mismatch between reported and calculated times.17  The two-way travel times we 

use vary from 2 to 180 minutes.   

First, we verify that households with higher travel times shop less and spend more when they 

                                                            
16 The ratio of dietary fiber grams less sugar grams to total carbohydrate grams purchased declines by 9% over the 

course of the month (p = 0.053).   
17 Specifically, we calculated the difference between the reported and calculated times and drop observations that are 

lower than the 5th percentile or higher than the 95th percentile of the difference distribution. 
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shop.  We limit our expenditure sample here to food for at-home consumption and continue to 

define shopping as an indicator for whether at least $1 was spent on food for at-home 

consumption.  In Table 8, column (1), we show that travel time does correlate negatively with 

shopping likelihood.  A 10-minute increase in round trip travel time relates to a 1% reduction in the 

likelihood of grocery shopping.  Column (2) demonstrates that expenditures are higher –roughly 

$1.74 for every 10 minutes of travel.  Increasing the shopping threshold increases the size of the 

coefficients in both columns (1) and (2), with both being statistically significant.  Thus, our basic 

predications for how travel time should interact with shopping pan out. 

 If travel time were a primary driver of the changes in shopping and expenditures over the 

course of the month, we would expect to see the gap in shopping between nearby and far away 

household expand over the course of the benefit month.  At the end of the benefit month, distant 

households should be less likely to shop (at least relative to the baseline likelihood gap at the 

beginning of the month, which could be positive, negative or zero).  In other words, when we 

add days since receipts and its interaction with travel time to the regressions from Table 8, 

column (1), we should negative coefficients on the interaction term.  We do not find strong 

evidence in favor of this hypothesis.  The coefficient on the interaction term in column (3) is a 

tightly estimated zero, indicating that there is a level gap in shopping likelihood associated with 

distance but that it isn’t changing over the benefit cycle.  Food access is not driving shopping 

patterns that lead to the calorie crunch.  Figure 6 shows the shopping trends over the month 

based on round trip sample time.  The data is roughly divided into equal thirds with groups of 10 

minutes or less, 10-20 minutes and 20 minutes or more.  The data are noisy, but the 20 minutes 

or more group is below the two closer groups consistently, but there are no clear time trends in 

the relationship across groups. 

In Section 3.2, we established that while expenditure and consumption trends are correlated 
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within households, they are not highly correlated.  We thus estimate the direct relationship 

between travel time and consumption.  Using both OLS and first-differenced individual fixed 

effects models, there is no time changing relationship between travel time and meal 

consumption.  The OLS specification shows no level relationship either.  Based on these 

findings, we think it is unlikely that food access is a primary cause of either the calorie crunch or 

its differential incidence across households. 

Discussion and conclusion 

The FoodAPS offers our first look at simultaneous expenditure and consumption profiles for 

SNAP households.  We replicate previous research with our measures of expenditure, and 

provide the first results measured in terms of missed meals, which have direct implications for 

food security classification.  Also, we show that quality of diet decreases over the benefit month; 

people eat fewer meals that consist of more carbohydrates and less protein.  While households 

exhibit strong downward trends in both consumption and expenditure throughout the benefit 

month, these behaviors are only loosely correlated.  This finding should prompt a more careful 

examination of how consumption decisions are made within the home, whereas the bulk of 

current policy interest focuses on intervention at the point of sale.  For instance, long travel time 

to the primary grocery store, a commonly proposed explanation for poor purchasing and 

consumption habits, has no relationship to dynamic outcomes.  On the other hand, when we 

examine within-household incidence of declines in consumption, we find that age is an important 

determinant of missed meals at the end of the month.  The youngest children are sheltered from 

the calorie crunch regardless of school status, but primary-school age children are sheltered only 

when school is in session.   

SNAP, the National School Lunch Program (NSLP) and the School Breakfast Program 

(SBP) have all been shown to positively impact children’s health.  We have already discussed the 
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literature linking SNAP to health outcomes.  Gleason and Suitor (2003) show that the NSLP 

improves nutritional intake, but also increases dietary fat consumption and indeed, Schanzenbach 

(2009) links the NSLP to increased childhood obesity.  Gundersen et al. (2012) estimate an 

overall positive impact on health.  Bhattacharya et al. (2006) show improvements in nutritional 

intake and overall diet quality for SBP participants and Dotter (2013) demonstrates that 

universally-free breakfast programs have lasting impacts on academic achievement.  Given our 

results, we suspect that some of the positive impacts of these programs may operate through the 

mitigation of cyclical food insecurity associated with the calorie crunch.  While participation in 

school meal programs is essentially universal in our SNAP sample, this does not mean 

redemption of those meals is.  Breakfast is the most commonly skipped meal: 67% of low-

income children don’t eat breakfast every day, with 19% of all children skipping breakfast on 

any given day (Moag-Stahlberg 2011, O’Neil et al. 2015).  Interventions that increase usage of 

the SBP and NSLP could mitigate cyclical food insecurity associated with SNAP in addition to 

raising the level of consumption.  Additionally, participation in summer break programs with 

meal provision is essentially nonexistent.  Current efforts to expand summer meal programs for 

children may also help smooth consumption.   

A puzzling aspect of our results is that there appear to be very little impact of school meal 

programs for middle or high-school children.  This could mean that our interpretation of the 

difference in calorie crunch by school status is incorrect.  Or, it could indicate that older children 

underutilize these programs.  We expect that stigma associated with these programs would 

increase with age.  Mirtcheva and Powell (2009) show that as the eligibility rate of a school 

increases, NSLP usage increases.  This is driven by behavior in high schools.  Bhatia et al. 

(2011) remove paid lunch options at high and middle schools in San Francisco and find 

increased uptake of NSLP lunches that exceeded the number of students originally paying for 
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lunch.  Expanding usage of NSLP and SBP at these levels could reduce cyclical food insecurity 

and potentially alleviate the associated behavioral problems identified by Gennetian et al. (2015). 
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Figure 1: Distribution of Benefit Receipt in Sample
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Figure 2: Expenditure Trends over the Benefit Month 
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Table 1: Estimates of Household Expenditure Trend 

Date range: All Days since receipt > 0 

Model: OLS FD FE Poisson OLS FD FE Poisson 

 (1) (2) (3) (4) (5) (6) 

Days since 

receipt 

-0.555*** 

(0.067) 

-3.819*** 

(0.386) 

-0.041*** 

(0.006) 

-0.231*** 

(0.058) 

-2.343*** 

(0.332) 

-0.018*** 

(0.006) 

Constant 31.570 

(1.538) 

  23.952 

(1.327) 

  

Clusters 1167 1167 961 1167 1167 920 

N 8169 6784 6585 7914 6559 6241 
***: p < 0.01.   Standard errors clustered by household are in parentheses beneath the estimates.  Week of month, a 

weekend indicator and an indicator for whether the diary day was a day on which the survey team called to check up 

on the respondent’s expenditure logs are included as controls in all specifications.  Columns (2) and (5) feature 

fewer observations than columns (1) and (4) due to first-differencing.  Columns (3) and (6) feature fewer 

observations than columns (1) and (4) because households with no variation in the dependent variable are dropped.  

Moving from columns (1), (2) and (3) to (4), (5) and (6) results in the loss of observations due to the exclusion of the 

day of benefit receipt from the sample. 

 

Table 2: Estimates of Meal Consumption Trend at Household and Individual Levels 

Unit of Analysis: Household Individual 

Model: OLS Tobit FD OLS Tobit FD 

 (1) (2) (3) (4) (5) (6) 

Panel A: All Data 

Days since 

receipt 

-0.006*** 

(0.002) 

-0.009*** 

(0.003) 

-0.025*** 

(0.004) 

-0.005*** 

(0.002) 

-0.012*** 

(0.004) 

-0.022*** 

(0.004) 

Constant 2.249 

(0.040) 

2.441 

(0.056) 

 2.310 

(0.041) 

3.079 

(0.096) 

 

Clusters 1167 1167 1167 1167 1167 1167 

N 8169 8169 6784 25,571 25,571 21,225 

Panel B: Non-imputed Data Only 

Days since 

receipt 

-0.010*** 

(0.003) 

-0.015*** 

(0.004) 

-0.027*** 

(0.004) 

-0.009*** 

(0.003) 

-0.022*** 

(0.006) 

-0.023*** 

(0.004) 

Constant 2.347 

(0.056) 

2.589 

(0.083) 

 2.411 

(0.055) 

3.327 

(0.132) 

 

Clusters 1088 1088 1044 1088 1088 1044 

N 6819 6819 5731 21,119 21,119 17,738 
***: p < 0.01.   Standard errors clustered by household are in parentheses beneath the estimates.  Week of month 

and a weekend indicator are included as controls in all specifications.  The number of meals in a day can range from 

0 to 3 for an individual: breakfast, lunch and dinner.  Averaged within a household, the meals variable is defined 

continuously between 0 and 3.  Columns (3) and (6) have fewer observations than the other models at the same 

analysis unit because of the first differencing. 
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Figure 3: Consumption Trends over the Benefit Month 

 

 

Table 3: Intra-Household Correlation between Expenditure and Consumption Trend 

Estimates 

Dep. Var.: Household Meal Consumption Trend 

Estimates: All Trimmed All Trimmed 

 (1) (2) (3) (4) 

Household Expenditure 

Trend 

0.046 

(0.029) 

0.054 

(0.039) 

-0.048 

(0.048) 

0.155** 

(0.067) 

Week of Month 

 

  -0.034 

(0.024) 

0.025 

(0.031) 

Household Expenditure 

Trend X Week of Month 

  0.051** 

(0.021) 

-0.060* 

(0.033) 

N 1167 615 1167 615 
**: p < 0.05, *: p < 0.10. 
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Table 4: Number of Daily Meals Consumption Trend by Age Group 

Sample: All Non-Imputed Data Only 

Model: OLS HH FE FD OLS HH FE FD 

 (1) (2) (3) (4) (5) (6) 

Days since receipt -0.007*** 

(0.002) 

-0.001 

(0.001) 

-0.022*** 

(0.004) 

-0.012*** 

(0.003) 

-0.002 

(0.002) 

-0.024*** 

(0.005) 

Age < 6 

 

0.441*** 

(0.061) 

0.377*** 

(0.048) 

 0.402*** 

(0.088) 

0.357*** 

(0.065) 

 

Days since receipt 

X age < 6 

0.007** 

(0.003) 

0.005* 

(0.002) 

0.012 

(0.008) 

0.010** 

(0.005) 

0.006* 

(0.003) 

0.018** 

(0.009) 

5 < age < 12 

 

0.336*** 

(0.069) 

0.365*** 

(0.048) 

 0.379*** 

(0.090) 

0.402*** 

(0.068) 

 

Days since receipt 

X 5 < age < 12 

0.007* 

(0.004) 

0.001 

(0.003) 

0.003 

(0.008) 

0.006 

(0.005) 

-0.001 

(0.004) 

0.004 

(0.009) 

11 < age < 18 

 

0.064 

(0.081) 

0.202*** 

(0.051) 

 -0.070 

(0.132) 

0.168** 

(0.075) 

 

Days since receipt 

X 11 < age < 18 

0.009** 

(0.004) 

0.001 

(0.003) 

-0.013 

(0.010) 

0.016** 

(0.007) 

0.003 

(0.004) 

-0.015 

(0.012) 

Constant 

 

2.199 

(0.041) 

  2.311 

(0.056) 

  

Clusters 1167 1167 1167 1088 1088 1044 

N 25,571 25,571 21,225 21,119 21,119 17,738 
***: p < 0.01, **: p < 0.05, *: p < 0.10.  Standard errors clustered by household are in parentheses beneath the 

estimates.  Week of month and a weekend indicator are included as controls in all specifications.  The number of 

meals in a day can range from 0 to 3 for an individual: breakfast, lunch and dinner.  Columns (3) and (6) have fewer 

observations than the other models in the same sample because of the first differencing. 

 

 

 

 

 

 

 



Food APS Research at UKCPR – Page 375 
 

 

 

 

 

 

 

Figure 4: Consumption Trend by Age 
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Figure 5: Smoothed Differences in Consumption from their Initial Value 
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Table 5: Difference in Consumption Trends by School Break Status 

Sample: All Non-Imputed Data Only 

School: Open Closed Open Closed 

 (1) (2) (3) (4) 

Days since receipt -0.004 

(0.003) 

-0.002 

(0.004) 

-0.007 

(0.005) 

-0.001 

(0.006) 

Difference: -0.002 

𝜒2 = 0.22 

(p = 0.637) 

-0.006 

𝜒2 = 0.56 

(p = 0.455) 

Days since receipt 

X not school-age 

0.003 

(0.005) 

-0.001 

(0.007) 

0.003 

(0.007) 

-0.002 

(0.009) 

Difference: 0.004 

𝜒2 = 0.16 

(p = 0.688) 

0.005 

𝜒2 = 0.22 

(p = 0.637) 

Days since receipt 

X primary school 

0.007 

(0.005) 

-0.008 

(0.007) 

< 0.001 

(0.006) 

-0.013 

(0.010) 

Difference: 0.015* 

𝜒2 = 3.04 

(p = 0.081) 

0.013 

𝜒2 = 2.18 

(p = 0.260) 

Days since receipt 

X middle school 

-0.002 

(0.006) 

-0.001 

(0.010) 

-0.001 

(0.009) 

0.011 

(0.015) 

Difference: -0.001 

𝜒2 < 0.01 

(p = 0.953) 

-0.012 

𝜒2 = 0.48 

(p = 0.468) 

Days since receipt 

X high school 

0.009 

(0.006) 

0.009 

(0.008) 

0.014 

(0.009) 

0.017 

(0.014) 

Difference: < 0.001 

𝜒2 < 0.01 

(p = 0.996) 

-0.003 

𝜒2 = 0.03 

(p = 0.862) 

Constant 

 

2.156 

(0.071) 

2.199 

(0.089) 

2.246 

(0.098) 

2.168 

(0.125) 

Clusters 529 487 

N 15,743 12,850 
*: p < 0.10.  Level effects of school age are excluded for presentation.  Standard errors clustered by household are in 

parentheses beneath the estimates unless otherwise indicated.  Week of month and a weekend indicator are included 

as controls in all specifications.  The number of meals in a day can range from 0 to 3 for an individual: breakfast, 

lunch and dinner.   
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Table 6: Number of Daily Meals Consumption Trend by Gender 

Sample: All Data Dual-Adult HHs 

Model: OLS HH FE FD OLS HH FE FD 

 (1) (2) (3) (4) (5) (6) 

Days since 

receipt 

-0.007*** 

(0.002) 

< 0.001 

(0.001) 

-0.016*** 

(0.005) 

-0.003 

(0.003) 

0.001 

(0.002) 

-0.013** 

(0.006) 

Male? 

 

-0.042 

(0.045) 

0.009 

(0.032) 

 -0.011 

(0.046) 

0.004 

(0.040) 

 

Days since 

receipt X Male? 

0.001 

(0.002) 

< 0.001 

(0.002) 

-0.014** 

(0.006) 

-0.001 

(0.002) 

< 0.001 

(0.002) 

-0.016** 

(0.007) 

Constant 

 

2.203 

(0.045) 

     

Clusters 1162 1162 1162 494 494 494 

N 15,386 15,386 12,765 8358 8358 6933 
***: p < 0.01, **: p < 0.05.  Standard errors clustered by household are in parentheses beneath the estimates.  All 

data are from adults.  Week of month and a weekend indicator are included as controls in all specifications.  The 

number of meals in a day can range from 0 to 3 for an individual: breakfast, lunch and dinner.  First-differenced 

models have fewer observations both because of the differencing and because we exclude across benefit-month 

differences. 

 

 

 

Table 7: Expenditure Bundle Trends over the Benefit Month 

Food 

Comparison: 

$Protein - $Carb 

$Total 

$Fruit & Vegetable - $Snack & Sweet 

$Total 

$Good - $Bad 

$Total 

 (1) (2) (3) 

Days since 

receipt 

-0.002*** 

(0.001) 

> -0.001 

(0.001) 

-0.002** 

(0.001) 

Constant 0.168 

(0.016) 

-0.035 

(0.017) 

0.159 

(0.019) 

Clusters 950 968 1110 

Observations 1775 1941 2977 
***: p < 0.01, **: p < 0.05.   Standard errors clustered by household are in parentheses beneath the estimates.  Week 

of month, a weekend indicator and an indicator for whether the diary day was a day on which the survey team called 

to check up on the respondent’s expenditure logs are included as controls in all specifications.  Days without any 

expenditure on either category being compared are excluded, therefore the number of observations depends on how 

frequently the items in question were purchased. 
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Table 8: Travel Time, Grocery Shopping and Grocery Expenditures 

Dependent variable: 1(Exp. ≥ 1) Exp. | Exp. ≥ 1 1(Exp. ≥ 1) Exp. | Exp. ≥ 1 

 (1) (2) (3) (4) 

Round trip travel time 

(minutes) 

-0.001*** 

(< 0.001) 

0.174* 

(0.098) 

-0.002*** 

(0.001) 

0.381 

(0.257) 

Days since receipt 

 

  -0.003*** 

(0.001) 

-1.039*** 

(0.274) 

Days since receipt X Round 

trip travel time (minutes) 

  < 0.001 

(< 0.001) 

-0.014 

(0.014) 

Constant 0.437 

(0.016) 

45.299 

(3.696) 

0.478 

(0.020) 

55.621 

(5.532) 

Clusters 941 893 941 893 

N 6587 2406 6587 2406 
***: p < 0.01, *: p < 0.10.   Standard errors clustered by household are in parentheses beneath the estimates.  Week 

of month, a weekend indicator and an indicator for whether the diary day was a day on which the survey team called 

to check up on the respondent’s expenditure logs are included as controls in all specifications.  The food 

expenditures are limited to purchases made for food at home because the travel time is calculated based on the 

distance to the respondent’s primary grocery store.  Reported travel time is used, but set to missing if it is an outlier 

in the distribution of mismatch between reported and calculated travel times (truncated at the 5th and 95th 

percentiles). 
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Figure 6: Round Trip Travel Time and Shopping Likelihood over the Benefit Month 

 

Appendix 
 

 

Table A1: Alternative Estimates of Household Expenditure Trend 

Date range: All Days since receipt > 0 

Model: Tobit MD Poisson Tobit MD Poisson 

 (1) (2) (3) (4) (5) (6) 

Days since 

receipt 

-0.763*** 

(0.111) 

-0.958*** 

(0.144) 

-0.027*** 

(0.003) 

-0.318*** 

(0.101) 

-0.327*** 

(0.118) 

-0.012*** 

(0.003) 

Constant 13.561 

(2.196) 

36.678 

(2.153) 

3.530 

(0.063) 

5.818 

(2.209) 

25.727 

(1.856) 

3.207 

(0.066) 

Clusters 1167 1167 1167 1167 1167 1167 

N 8169 8169 8169 7914 7914 7914 
***: p < 0.01.  Standard errors clustered by household are in parentheses beneath the estimates unless otherwise 

indicated.  Week of month, a weekend indicator and an indicator for whether the diary day was a day on which the 

survey team called to check up on the respondent’s expenditure logs are included as controls in all specifications.  

Columns (4)-(6) feature fewer observations due to the excluded day of SNAP receipt. 

 

 

 

 

Table A2: Extensive Margin Estimates of Household Shopping Trend 

Model: LPM FD LPM Probit Household Conditional Logit 

 (1) (2) (3) (4) 

Days since 

receipt 

-0.002** 

(0.001) 

-0.008*** 

(0.002) 

-0.002** 

(0.001) 

-0.004*** 

(0.001) 

Constant 0.615 

(0.017) 

 0.614 

(0.017) 

 

Clusters 1167 1167 1167 1050 

N 8169 7002 8169 7350 
***: p < 0.01, *: p < 0.10.  Standard errors clustered by household are in parentheses beneath the estimates unless 

otherwise indicated.  Week of month, a weekend indicator and an indicator for whether the diary day was a day on 

which the survey team called to check up on the respondent’s expenditure logs are included as controls in all 

specifications.  Marginal effects are presented in columns (3) and (4).  Column (2) features fewer observations 

because of the first-differencing.  Column (4) features fewer observations because households without variation in 

the dependent variable are dropped.  
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Table A3: Estimates of Household Food at Home Expenditure Trend 

Date range: All Days since receipt > 0 

Model: OLS FD FE Poisson OLS FD FE Poisson 

 (1) (2) (3) (4) (5) (6) 

Days since 

receipt 

-0.590*** 

(0.062) 

-3.458*** 

(0.360) 

-0.052*** 

(0.008) 

-0.267*** 

(0.050) 

-2.022*** 

(0.304) 

-0.025*** 

(0.008) 

Constant 26.290 

(1.440) 

  18.688 

(1.162) 

  

Clusters 1167 1167 835 1167 1167 787 

N 8169 6784 5656 7914 6559 5277 
***: p < 0.01.  Standard errors clustered by household are in parentheses beneath the estimates unless otherwise 

indicated.  Week of month, a weekend indicator and an indicator for whether the diary day was a day on which the 

survey team called to check up on the respondent’s expenditure logs are included as controls in all specifications.  

Columns (2) and (5) feature fewer observations than columns (1) and (4) due to first-differencing.  Columns (3) and 

(6) feature fewer observations than columns (1) and (4) because households with no variation in the dependent 

variable are dropped.  Moving from columns (1), (2) and (3) to (4), (5) and (6) results in the loss of observations due 

to the exclusion of the day of benefit receipt from the sample. 

 

 

 

 

 

 

 

 

Table A4: Estimates of Household Expenditure Trend Measured as a Difference from the 

Expenditures of non-SNAP Households 

Date range: All Days since receipt > 0 

Dep. var: Expenditures ($) 1(Exp. ≥ 1) Expenditures ($) 1(Exp. ≥ 1) 

Model: OLS FD FD LPM OLS FD FD LPM 

 (1) (2) (3) (4) (5) (6) 

Days since 

receipt 

-0.555*** 

(0.069) 

-3.864*** 

(0.394) 

-0.038*** 

(0.004) 

-0.223*** 

(0.060) 

-2.365*** 

(0.340) 

-0.034*** 

(0.004) 

Constant 10.413 

(1.582) 

  2.621 

(1.380) 

  

Clusters 1167 1167 1167 1167 1167 1167 

N 8154 6769 6769 7899 6544 6544 
***: p < 0.01.  Standard errors clustered by household are in parentheses beneath the estimates unless otherwise 

indicated.  Week of month, a weekend indicator and an indicator for whether the diary day was a day on which the 

survey team called to check up on the respondent’s expenditure logs are included as controls in all specifications.  

Columns (2), (3), (5) and (6) feature fewer observations than columns (1) and (4) due to first-differencing. 
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Table A5: Estimates of Meal Consumption Trend at Household and Individual Levels 

Unit of Analysis: Household Individual 

Model: OLS Tobit FD OLS Probit FD 

 (1) (2) (3) (4) (5) (6) 

Panel A: Breakfast Only 

Days since 

receipt 

-0.003*** 

(0.001) 

-0.007*** 

(0.003) 

-0.010*** 

(0.002) 

-0.002** 

(0.001) 

-0.002** 

(0.001) 

-0.009*** 

(0.002) 

Constant 0.655 

(0.019) 

0.898 

(0.054) 

 0.682 

(0.018) 

0.682 

(0.018) 

 

Panel B: Lunch Only 

Days since 

receipt 

-0.001* 

(0.001) 

-0.005* 

(0.003) 

-0.006*** 

(0.002) 

-0.002** 

(0.001) 

-0.002** 

(0.001) 

-0.005*** 

(0.002) 

Constant 0.732 

(0.017) 

1.208 

(0.063) 

 0.766 

(0.018) 

0.765 

(0.017) 

 

Panel C: Dinner Only 

Days since 

receipt 

-0.002** 

(0.001) 

-0.009** 

(0.004) 

-0.009*** 

(0.002) 

-0.001 

(0.001) 

-0.001 

(0.001) 

-0.007*** 

(0.002) 

Constant 0.862 

(0.014) 

2.109 

(0.112) 

 0.861 

(0.014) 

0.861 

(0.014) 

 

Panel D: Breakfast, Lunch, Dinner all Missed 

Days since 

receipt 

0.001* 

(< 0.001) 

0.013* 

(0.008) 

0.011*** 

(0.001) 

0.001 

(< 0.001) 

0.001 

(< 0.001) 

0.009*** 

(0.001) 

Constant 0.047 

(0.010) 

-2.884 

(0.308) 

 0.046 

(0.009) 

0.047 

(0.008) 

 

Panel E: Snacks (any) 

Days since 

receipt 

-0.002*** 

(< 0.001) 

-0.013*** 

(0.004) 

-0.014*** 

(0.002) 

-0.001** 

(< 0.001) 

-0.001** 

(< 0.001) 

-0.012*** 

(0.002) 

Constant 0.938 

(0.010) 

2.661 

(0.147) 

 0.934 

(0.010) 

0.932 

(0.009) 

 

Clusters 1167 1167 1167 1167 1167 1167 

N 8169 8169 6784 25,571 25,571 21,225 
***: p < 0.01, **: p < 0.05, *: p < 0.10.   Standard errors clustered by household are in parentheses beneath the 

estimates.  Week of month and a weekend indicator are included as controls in all specifications.  All variables are 

binary on the individual level.  Averaged within a household, the variables are defined continuously between 0 and 

1.  Columns (3) and (6) have fewer observations than the other models at the same analysis unit because of the first 

differencing.  Marginal effects are presented in column (5). 

 

 

 

 

 

 

 

 

 



Food APS Research at UKCPR – Page 383 
 

Table A6: Breakfast Consumption Trend by Age Group 

Sample: All Non-Imputed Data Only 

Model: OLS HH FE FD OLS HH FE FD 

 (1) (2) (3) (4) (5) (6) 

 Days since receipt -0.004*** 

(0.001) 

-0.001* 

(0.001) 

-0.010*** 

(0.002) 

-0.006*** 

(0.001) 

-0.002** 

(0.001) 

-0.011*** 

(0.002) 

Age < 6 

 

0.215*** 

(0.028) 

0.223*** 

(0.027) 

 0.197*** 

(0.040) 

0.211*** 

(0.037) 

 

Days since receipt 

X age < 6 

0.005*** 

(0.001) 

0.003* 

(0.001) 

0.009** 

(0.004) 

0.006*** 

(0.002) 

0.003* 

(0.002) 

0.011*** 

(0.004) 

5 < age < 12 

 

0.175*** 

(0.030) 

0.211*** 

(0.027) 

 0.182*** 

(0.039) 

0.237*** 

(0.036) 

 

Days since receipt 

X 5 < age < 12 

0.005*** 

(0.002) 

< 0.001 

(0.001) 

-0.001 

(0.004) 

0.005** 

(0.002) 

-0.001 

(0.002) 

< 0.001 

(0.004) 

11 < age < 18 

 

0.040 

(0.036) 

0.105*** 

(0.029) 

 -0.021 

(0.058) 

0.082* 

(0.044) 

 

Days since receipt 

X 11 < age < 18 

0.004* 

(0.002) 

< 0.001 

(0.002) 

-0.007 

(0.005) 

0.007** 

(0.003) 

0.002 

(0.003) 

-0.006 

(0.005) 

Constant 

 

0.625 

(0.020) 

  0.681 

(0.027) 

  

Clusters 1167 1167 1167 1088 1088 1044 

N 25,571 25,571 21,225 21,119 21,119 17,738 
***: p < 0.01, **: p < 0.05, *: p < 0.10.  Standard errors clustered by household are in parentheses beneath the 

estimates.  Week of month and a weekend indicator are included as controls in all specifications.  Breakfast 

consumption is a binary variable.  We use linear probability models for fixed-effect flexibility and because the mean 

of the dependent variable is not too close to zero or one.  Columns (3) and (6) have fewer observations than the other 

specification on the same sample because of the first differencing.   
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Table A7: Lunch Consumption Trend by Age Group 

Sample: All Non-Imputed Data Only 

Model: OLS HH FE FD OLS HH FE FD 

 (1) (2) (3) (4) (5) (6) 

 Days since receipt -0.002*** 

(0.001) 

< 0.001 

(0.001) 

-0.003 

(0.002) 

-0.004*** 

(0.001) 

> -0.001 

(0.001) 

-0.004 

(0.003) 

Age < 6 

 

0.165*** 

(0.025) 

0.114*** 

(0.020) 

 0.146*** 

(0.035) 

0.090*** 

(0.026) 

 

Days since receipt 

X age < 6 

0.001 

(0.001) 

0.001 

(0.001) 

-0.004 

(0.004) 

0.003 

(0.002) 

0.002* 

(0.001) 

-0.001 

(0.004) 

5 < age < 12 

 

0.134*** 

(0.030) 

0.128*** 

(0.023) 

 0.154*** 

(0.036) 

0.130*** 

(0.032) 

 

Days since receipt 

X 5 < age < 12 

0.001 

(0.002) 

> -0.001 

(0.001) 

-0.002 

(0.004) 

< 0.001 

(0.002) 

> -0.001 

(0.002) 

-0.003 

(0.004) 

11 < age < 18 

 

0.072** 

(0.033) 

0.093*** 

(0.022) 

 0.040 

(0.049) 

0.090*** 

(0.033) 

 

Days since receipt 

X 11 < age < 18 

0.001 

(0.002) 

-0.001 

(0.001) 

-0.010* 

(0.005) 

0.003 

(0.003) 

> -0.001 

(0.002) 

-0.012** 

(0.006) 

Constant 

 

0.718 

(0.018) 

  0.762 

(0.025) 

  

Clusters 1167 1167 1167 1088 1088 1044 

N 25,571 25,571 21,225 21,119 21,119 17,738 
***: p < 0.01, **: p < 0.05.  Standard errors clustered by household are in parentheses beneath the estimates.  Week 

of month and a weekend indicator are included as controls in all specifications.  Lunch consumption is a binary 

variable.  We use linear probability models for fixed-effect flexibility and because the mean of the dependent 

variable is not too close to zero or one.  Columns (3) and (6) have fewer observations than the other specification on 

the same sample because of the first differencing.   
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Table A8: Dinner Consumption Trend by Age Group 

Sample: All Non-Imputed Data Only 

Model: OLS HH FE FD OLS HH FE FD 

 (1) (2) (3) (4) (5) (6) 

 Days since receipt -0.001* 

(0.001) 

< 0.001 

(< 0.001) 

-0.009*** 

(0.002) 

-0.002** 

(0.001) 

> -0.001 

(0.001) 

-0.009*** 

(0.002) 

Age < 6 

 

0.061*** 

(0.022) 

0.040** 

(0.018) 

 0.059** 

(0.030) 

0.056** 

(0.022) 

 

Days since receipt 

X age < 6 

0.001 

(0.001) 

0.001 

(0.001) 

0.007* 

(0.004) 

0.001 

(0.002) 

< 0.001 

(0.001) 

0.008* 

(0.004) 

5 < age < 12 

 

0.027 

(0.024) 

0.027** 

(0.013) 

 0.042 

(0.035) 

0.036* 

(0.019) 

 

Days since receipt 

X 5 < age < 12 

0.001 

(0.001) 

0.001 

(0.001) 

0.005 

(0.003) 

0.001 

(0.002) 

< 0.001 

(0.001) 

0.007* 

(0.004) 

11 < age < 18 

 

-0.048 

(0.030) 

0.004 

(0.019) 

 -0.089* 

(0.046) 

-0.004 

(0.024) 

 

Days since receipt 

X 11 < age < 18 

0.004** 

(0.002) 

0.001 

(0.001) 

0.004 

(0.005) 

0.006** 

(0.002) 

0.001 

(0.001) 

0.003 

(0.006) 

Constant 

 

0.855 

(0.014) 

  0.869 

(0.021) 

  

Clusters 1167 1167 1167 1088 1088 1044 

N 25,571 25,571 21,225 21,119 21,119 17,738 
***: p < 0.01, **: p < 0.05, *: p < 0.10.  Standard errors clustered by household are in parentheses beneath the 

estimates.  Week of month and a weekend indicator are included as controls in all specifications.  Dinner 

consumption is a binary variable.  We use linear probability models for fixed-effect flexibility and because the mean 

of the dependent variable is not too close to zero or one.  Columns (3) and (6) have fewer observations than the other 

specification on the same sample because of the first differencing.   
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Abstract 
The Supplemental Nutrition Assistance Program (SNAP) is the largest nutritional safety 

net in the United States. Prior research has found that participants have higher consumption 

shortly after receiving their benefits, followed by lower consumption towards the end of the 

benefit month. This “SNAP benefit cycle” has been found to have negative effects on 

beneficiaries. We examine two behavioral responses of SNAP participants that may work in 

tandem to drive much of the cycle: short-run impatience – a higher preference to consume today; 

and fungibility of income – the degree of substitutability between a SNAP dollar and a cash 

dollar. Using data from the National Food Acquisition and Purchase Survey (FoodAPS), we find 

evidence of both behavioral responses.  The degree of short-run impatience and fungibility of 

income is found to differ significantly across poverty levels and use of grocery lists to plan food 

purchases. Food purchase planning education could be used to counter the observed benefit 

cycle. Deeper analysis of the purchase data suggests that the benefit cycle is primarily associated 

with a decrease in the purchase of healthful and perishable foods—which could lead to lower 

dietary quality. We also find evidence that suggests households compensate for the effects of the 

SNAP benefit cycle by acquiring free food, primarily from schools. This highlights the 

importance of programs like the National School Lunch Program for SNAP households. 
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Executive summary 
 

Prior research has found that SNAP participants have higher food consumption shortly 

after receiving their benefits, followed by lower consumption towards the end of the benefit 

month. This “SNAP benefit cycle” can lead to consumption patterns that have negative effects 

on beneficiaries. For example, SNAP beneficiaries consume fewer calories towards the end of 

the benefit cycle, suggesting potential increased risk of food insecurity. There is evidence of 

increased hospital admissions due to hypoglycemia among low-income individuals at the end of 

the benefit month as well.     

We consider two behavioral mechanisms that might lead to such benefit cycles. The first 

mechanism suggests that households exhibit short-run impatience and therefore have a higher 

preference for today’s consumption. As such, they spend more of their SNAP resources early in 

the month, leaving themselves at higher risk to negative income shocks later in the month. In 

addition, we explore whether a second behavioral phenomenon, income fungibility, could be 

exacerbating the degree of the cycle. This behavioral mechanism suggests that SNAP households 

exhibit a higher propensity to spend on food when using benefit income rather than cash income. 

As a result, a one-dollar increase in SNAP benefits generates more spending on food than an 

equal increase in cash income.  Put differently, SNAP income is budgeted differently than an 

equal amount of cash income. 

To empirically examine SNAP-spending patterns, we use data from the National Food 

Acquisition and Purchase Survey (FoodAPS). The survey is a newly developed nationally 

representative measure of daily food acquisitions by SNAP households. Importantly, FoodAPS 

respondents report daily food spending by venue (i.e., at home and away from home), as well as 

the type of income used to make the purchase (i.e., SNAP and non-SNAP income).  
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We find significant evidence of time-inconsistent spending. Specifically, households 

spend roughly 96 cents of every food dollar (regardless of its income source) on food at home 

the day benefits are issued. This propensity to spend on food at home falls by 10 cents in the 

three days that follow. By the end of the month, households are spending just over three-quarters 

of their food budget on food at home. Given that food at home is of higher nutritional value than 

food away from home, this spending pattern may have important implications for household 

dietary quality throughout the month. 

In addition, SNAP households have a consistently higher propensity to spend on food at 

home out of SNAP benefits than out of non-SNAP expenditures, regardless of the time of month. 

Specifically, we find that an increase in SNAP benefits will generate 5.2% more in food-at-home 

spending than an equal increase in non-SNAP income. This finding implies that SNAP income is 

less fungible than an equal amount of cash income despite the fact that economic theory suggests 

the two should be equally fungible.  

We next examine how households might overcome their impatience and/or budgeting 

difficulties. To do so, we examine differences in monthly spending patterns for households that 

frequently utilize grocery lists compared to those that do not. We view grocery lists as a type of 

self-commitment mechanism. We also explore how severe resource constraints impact 

purchasing decisions. We find strong evidence that households who plan more frequently, as 

well as those who are less resource constrained, have smoother spending on food at home 

throughout the month. Moreover, these households tend to budget SNAP income more similarly 

to cash income, just as economic theory would suggest. These results suggest that small 

measures to facilitate household food planning could be an effective way to mitigate the SNAP 

benefit cycle.  
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Simple commitment strategies could be taught through the SNAP Education program that 

could help mitigate the SNAP benefit cycle. For example, teaching households how to plan and 

budget their benefits may help overcome some of their behavioral shortfalls. Another policy 

prescription could be to make bi-monthly or weekly disbursements the default option for SNAP 

disbursements. Previous findings have suggested that increasing the frequency of payments 

could encourage smoother consumption over the month. Some households, however, may prefer 

to make one large grocery trip per month due to costs. Those who prefer or need a single 

monthly payment can simply enroll in that option.  

We further break down the SNAP purchase data into specific food categories. Over the 

benefit cycle, we find that household purchases of more healthful foods (defined by the Healthy 

Eating Index) and perishable foods decline over the month. Alternatively, purchases of less 

healthful and non-perishable foods, such as snacks and sugar-sweetened beverages, are constant 

over the month. This suggests that the SNAP benefit cycle may result in purchases of foods with 

lower nutritional quality. At the same time, storability appears to be an important consideration 

of the SNAP benefit cycle as well. 

Finally, we examine a component of food acquisition by low-income households that has 

not been extensively investigated to date: the acquisition of free food. Over the course of the 

benefit month, SNAP household food purchases decline, but the acquisition of free food remains 

relatively constant. As a result, free food tends to compensate for a reduction in food purchases 

via cash and SNAP spending. As SNAP households are highly dependent on schools for their 

largest share of free food, this highlights the importance of school lunch programs for SNAP 

households.  
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Introduction 

 

The Supplemental Nutrition Assistance Program (SNAP) is the nation’s largest food 

assistance program providing over 45 million low-income Americans a monthly benefit. 

Administrative records reveal that more than 80% of SNAP benefits are redeemed within the 

first two weeks of issuance (Castner and Henke 2011), a consumption pattern known as the 

“SNAP benefit cycle.” This cycle has been linked to potentially negative consequences for 

participants: SNAP beneficiaries consume fewer calories towards the end of the benefit cycle, 

suggesting potential increased risk of food insecurity (Shapiro 2005; Todd 2014; and Wilde and 

Ranney 2000). Seligman et al. (2014) finds that there is a 27% increase in hospital admissions 

due to hypoglycemia among low-income individuals at the end of the benefit month, with no 

observed increase in higher-income populations.     

The behavioral mechanism most frequently attributed to payment benefit cycles is time-

inconsistent preferences (e.g., Shapiro 2005; Mastrobuoni and Weinberg 2009). A time-

inconsistent household exhibits short-run impatience and therefore has a higher preference for 

today’s consumption. An impatient household has a higher tendency to spend when resources are 

flush. This is inconsistent with the household’s preference to spend at the end of the month. 

Households may therefore put themselves at a higher risk to negative income shocks and food 

insecurity later in the month.  

Economic theory predicts that SNAP households who receive benefit income less than 

their food budget should not treat SNAP differently than non-SNAP income (Southworth, 1945). 

Yet, previous literature has found that SNAP households exhibit a higher marginal propensity to 

spend (MPS) on food when using benefit income rather than cash income (Fraker, Martini and 

Ohls 1995; Levedhal 1995; Breunig and Dasgupta 2002, 2005). This means a one-dollar increase 
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in SNAP benefits generates more spending on food than an equal increase in cash income. We 

explore whether this second behavioral phenomenon, referred to in the literature as income 

fungibility, could be exacerbating the degree of the cycle.i 

Laibson (1998) shows that an impatient SNAP household will spend relatively more upon 

receiving benefits, and a higher MPS out of SNAP can increase this effect. If this occurs, then 

part of the SNAP benefit cycle is being driven by income fungibility and cannot be completely 

attributed to time-inconsistent preferences. Understanding time-inconsistent preferences and 

income fungibility can help guide the development of policy prescriptions to reduce the SNAP 

benefit cycle.  

We estimate food Engel curves using data from the National Food Acquisition and 

Purchase Survey (FoodAPS). The survey is a newly developed nationally representative measure 

of daily food acquisitions by SNAP households. FoodAPS respondents report daily food 

spending by venue (i.e., at home and away from home), as well as the type of income used to 

make the purchase (i.e., SNAP and non-SNAP income). Further, respondents report the 

acquisition of free food from a variety of sources (e.g. school, family and friends). The data also 

includes nutritional content of the food items allowing us to assess the nutritional content of 

purchases as well as the overall healthfulness of purchases throughout the month.  

Methods 

To examine how time inconsistency and income fungibility affect SNAP-spending 

patterns, we start with a simple Engel curve specification: 

(1) 𝑤𝑘 = 𝛼𝑘 + 𝛽𝑘𝑙𝑛(𝑋) + 𝑍′𝜙𝑘, 

where w is the share of total daily food expenditures (X) on k = {food at home (FAH), food away 

from home (FAFH)}, Z includes the natural logarithm of household size, indicators for 
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race/ethnicity and a variable indicating the presence of a child under 6. Time subscripts are 

excluded throughout to simplify notation.  

Following previous empirical findings (Moffitt 1989; Levedahl 1995; Breunig and 

Dasgupta 2002, 2005), we express total daily expenditures as a linear function of cash and SNAP 

expenditures, 𝑋 = 𝐼 + 𝛾𝑆. The difference between the marginal propensity to spend cash income 

(𝑀𝑃𝑆𝐼) and the MPS for SNAP (𝑀𝑃𝑆𝑆) is indicated by 𝛾. If 𝛾=1, the two sources of income are 

perfectly fungible and spending with cash or SNAP has no influence on the effective discount 

factor. 

An important consideration with a hyperbolic preference framework is that discount 

factors are inconsistent across time. To examine potential time-inconsistent preferences, we 

modify equation (1) to allow budget shares to shift via the intercept and slope (cf. Blundell and 

Lewbel, 1991) as households progress through the benefit month:  

(2) 𝑤𝑘 = 𝛼𝑘 + 𝛽𝑘𝑙𝑛(𝑋) + 𝑍′𝜙𝑘 + 𝐷𝑡′𝛿𝑘 + [ln(𝑋) ∙ 𝐷𝑡]′𝜂𝑘 

where 𝐷𝑡 is a flexible specification of the number of days since receiving SNAP benefits. We 

specify 𝐷𝑡 to be a set of six indicators corresponding to days 0, 1-3, 4-6, 7-14, 15-21, and 22-30.ii  

The effect of 𝐷𝑡 acts as a demand shifter estimated by the vector 𝛿𝑘. This allows us to capture 

any intra-monthly consumption that is determined strictly by temporal variation. The vector 𝜂𝑘 

allows the MPS out of both cash and SNAP to change over the benefit month through its 

interaction with the log of total expenditures. 

Marginal Propensities to Spend 

We estimate the average MPS out of SNAP for an entire benefit month as: 

(3)  𝑀𝑃𝑆𝑆 =
𝜕𝑋𝑘

𝜕𝑆
= 𝑤𝑘 + (𝐼 + 𝑆)

𝛾𝑘(𝛽𝑘+𝐷𝑡
′𝜂𝑘)

𝐼+𝛾𝑘𝑆
 , 
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where we use the daily average values for expenditure share (𝑤𝑘), cash (𝐼), SNAP (𝑆) and days 

since receiving SNAP (𝐷𝑡). The remaining parameters are estimated from equation (2). We 

calculate the average MPS out of cash over the benefit month as: 

(4)  𝑀𝑃𝑆𝐼 =
𝜕𝑋𝑘

𝜕𝐼
= 𝑤𝑘 + (𝐼 + 𝑆)

(𝛽𝑘+𝐷𝑡
′𝜂𝑘)

𝐼+𝛾𝑘𝑆
 . 

To estimate the MPS at different points in the benefit month, we evaluate all terms in (3) 

and (4) during the time period of interest. To test for fungibility, we take the difference between 

(3) and (4), 

(5) 𝑀𝑃𝑆(𝑆−𝐼) = (𝐼 + 𝑆)
(𝛽𝑘+𝐷𝑡

′𝜂𝑘)(𝛾𝑘−1)

𝐼+𝛾𝑘𝑆
 . 

If 𝛾𝑘 = 1, there is no difference in the propensities to use SNAP and cash on food-at-home 

purchases (i.e., they are perfectly fungible). To examine the interaction between fungibility and 

impatience, we estimate equation (5) at different points in the benefit month in the same manner 

as described above.  

Expenditure Patterns by Food Type 

 

To explore how the SNAP benefit cycle persists across different types of food, we 

modify equation (2) to specify a log-log model as: 

(6)  𝐸𝑗 = 𝛼𝑗 + 𝛽𝑗𝑙𝑛(𝐼 + 𝑆) + 𝛾𝑗𝑃 + 𝑍′𝜙𝑗 + 𝐷𝑡′𝛿𝑗 + [ln(𝐼 + 𝑆) ∙ 𝐷𝑡]′𝜂𝑗 + 𝑃 ∙ 𝐷𝑡′𝑃𝜙𝑗 

where the dependent variable, 𝐸𝑗, is now the log of the expenditure share for food product j. Due 

to a limited number of observations, we no longer estimate the fungibility of income, so that 𝑋 =

𝐼 + 𝑆. Further, we add P, which is the share of SNAP expenditures out of the entire budget: S/(I 

+ S). This simplified model allows us to focus on the trend in spending over the month with 

specific food products.  
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Free Food Acquisition 

By definition, free food does not have a price so we cannot estimate changes in free food 

acquisition using an expenditure share dependent variable. We therefore modify equation (6) to 

examine the share of free food in terms of grams for specific food categories. For example, we 

evaluate grams of dairy a household acquired for free relative to a household’s total acquisition 

of dairy. We also examine the share of nutrition from free food relative to all other food. Both of 

these variables allow us to track how free food acquisition changes over the month following the 

receipt of SNAP benefits. 

Data 

The National Food Acquisition and Purchase Survey (FoodAPS) is a nationally 

representative survey that collected daily food acquisitions of households over a seven-day 

period between April 2012 and January 2013. Respondents recorded food acquisitions in two 

diaries: food at home (FAH) and food away from home (FAFH). Each diary entry corresponds to 

an “event,” such as a grocery-shopping trip or a sit-down meal at a restaurant. For the FAH 

diary, households were asked to scan UPC codes, either on the food package or provided in the 

diary for loose/bulk items, and to write down the total expenditure for that event. Similarly for 

the FAFH diary, households provided the total expenditure for the event and were asked to write 

down each item purchased. In both diaries households were also asked to provide the receipt if 

one was given. Importantly, households also record the type of income used to make the 

transaction. All analyses use the sum of the total expenditures for each event for FAH and FAFH 

by diary day. 

FoodAPS emphasizes households participating in the Supplemental Nutrition Assistance 

Program (SNAP) and was stratified accordingly. Of the 4,826 households surveyed, 1,581 
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households had at least one member currently on SNAP. The initial interview took place prior to 

the start of the seven-day diary, in most cases the day before the first diary day. During this 

interview, households were asked the date they last received their SNAP benefits. Using this date 

and the diary dates, we calculated the number of days since receiving benefits. Thus, day zero 

indicates the day of benefit arrival and day 30 the last possible day of the cycle.  

There were 261 households that were nearing the end of their benefit cycle during the 

initial interview. For example, suppose the initial interview took place on day 28th of the benefit 

cycle. In this case the first and final dairy days would have been calculated as the 29th and 35th 

days of the benefit cycle. For these households, we assumed benefits were again received on the 

same calendar day as the previous month so that the cycle starts over during the survey. After 

this adjustment and excluding households that reported receiving their benefits more than 30 

days prior to the initial interview, our final sample consisted of 1,427 SNAP households.iii  

We make use of the standard demographic characteristics in the empirical section 

(household size, race/ethnicity, and the presence of children under the age of 6). As well, we 

consider reported frequency of grocery list usage. The survey asked how often households use a 

grocery list – never, seldom, sometimes, most of the time or always. We categorize “infrequent 

grocery list users” as those that reported never or seldom. All other households are categorized as 

“frequent grocery list users.” 

The data also provide nutritional information for each of the items in the food diaries. 

This extensive process developed by the USDA, Economic Research Service allows us to 

develop various measures of the nutritional content of household food acquisitions. Together 

with food descriptions, we create four broad categories of food: healthful or unhealthful and 

perishable or non-perishable (Table 1). The term healthful is based on the Healthy Eating Index 



Food APS Research at UKCPR – Page 396 
 

(HEI) definition which suggests certain foods should be eaten more (adequacy). Alternatively, 

unhealthful foods are based on the HEI suggestion for foods that should be eaten in moderation 

(moderate). We identify perishable and non-perishable foods using a classification from the 

University of Nebraska (http://food.unl.edu/food-storage). While these are broadly defined 

categories, they allow us to examine how the SNAP benefit cycle impacts the types of foods 

being eaten.  

Summary measures 

Our final sample of 1,427 SNAP households contributed 3,400 purchase days. In the 

empirical methods below, we discuss zero purchase days. In short, we treat each purchase day as 

conditionally independent. Also note we will be examining purchases rather than acquisitions.  

Figure 1 presents graphical evidence of spending patterns. On the day of benefit receipt, 

the average SNAP household spends $141.95 on food. Over half of this expenditure is from non-

SNAP income ($72.97) and the remainder largely comes from SNAP income ($62.62) with 

relatively few FAFH purchases ($6.36). Throughout the rest of the benefit month the average 

household consistently spends more out-of-pocket on FAH than with benefit income. 

Interestingly, during the last two weeks of the benefit month, FAFH significantly outpaces non-

SNAP FAH purchases. 

Table 2 presents average per-day spending for the entire month in column 1. SNAP 

households spend an average of $45.70 per day on food (conditional on a positive purchase), 

with over 86% ($39.59) spent on items for at-home consumption. Columns 2 and 3 split 

purchase days by those made in the first week of the benefit month and by the rest of the month. 

We can see that total food expenditures drop by over $25 per day. This drop is entirely from 

FAH expenditures, and FAFH expenditures remain level at about $6 per day. Although total food 
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spending significantly declines over the benefit month, the share of expenditures devoted to 

food-at-home in week 1 (88%) are not significantly different than the last three weeks (85%).  

Table 3 presents demographic characteristics and average weekly expenditures for our 

sample. To get a sense of how “beginning-of-the-month” households compare to those randomly 

surveyed during the rest of the month we split the sample accordingly. Column 2 includes 

households that have at least one diary day corresponding to benefit days 0, 1, 2 or 3 (labeled 

“Week 1”). In this manner we are capturing household diaries that “straddle” the day benefits are 

disbursed (e.g., when the diary starts on day 28), or when diaries begin shortly after benefit 

disbursement. All other household dairies falling outside this range are in column 3 (labeled 

“Weeks 2-4”). The p-values in column 4 test the significance between households randomly 

surveyed towards the beginning of the benefit cycle versus those that are surveyed during the rest 

of the month. We expect demographics to be insignificant. Yet, we see that the proportion of 

Hispanics dropped significantly from 27 to 20%. Likewise we see that the proportion of frequent 

grocery list users also falls. As expected, all expenditures drop significantly over the month 

expect for FAFH. 

Table 4 describes expenditures for different categories of foods (e.g. healthful, 

unhealthful, perishable and non-perishable) for the first 3 days after receiving SNAP and the last 

2 – 4 weeks. There was no difference in expenditures over the 2- to 4-week period, so the 

data is grouped together as such. As can be seen, both total food expenditures and SNAP 

expenditures go decrease after the first 3 days since receiving SNAP benefits. Further, 

expenditures go down significantly from the first 3 days to the rest of the month for all of the 

broad food categories. This does not indicate, however, that the MPS for these food categories 

changes over the month.   
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There are many instances of free food acquisitions in the FAFH diaries (e.g., 

friend’s/relative’s home, food pantries, school meal programs, home gardens, and 

fishing/hunting), but relatively few free food events in the FAH diaries. The majority of free 

food for SNAP households comes from school with family and friends being the next largest 

source (Figure 2). The former is likely from the National School Lunch Program. Alternatively, 

non-SNAP households (Figure 3) obtain the majority of their free food from family and friends 

and the share received from school is about half as much as SNAP households.  

For estimation purposes, we aggregate free food it into 5 large categories: dairy, fruits, 

vegetables, grains and protein. We also examine free food based on its contribution to: calories, 

carbohydrates, fat and added sugar. While these are not extensive descriptions of household 

diets, they help provide an idea about how SNAP households utilize free food throughout the 

month.  

Results 

All parameters from equation (2) are estimated using maximum likelihood and can be 

found in tables 5 and 6iv. The marginal propensities are presented graphically in figures 4-8 with 

corresponding estimates in tables 7-8. The top panel of each figure plots the marginal 

propensities to spend (MPS) on food at home out of SNAP and non-SNAP expenditures 

throughout the benefit month using equations (6) and (7), respectively.v A decline in the 

estimates over the month is consistent with hyperbolic discounting. The bottom panel of each 

figure estimates the difference in the propensities to spend using equation (8). Here, a positive 

difference is evidence against the fungibility of SNAP and non-SNAP income. For example, on 

the day benefits are received (day 0), SNAP households spend roughly $0.09 more on food at 

home when using a SNAP dollar rather than a non-SNAP dollar. Finally, the compounding effect 
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of time-inconsistent preferences and income fungibility can be seen in the bottom panel when the 

difference in MPS varies over the month.  

All standard errors are calculated using the delta method and clustered at the household 

level. In the results that follow, there are cases where we find a statistically significant difference 

in the two MPS values in the bottom panel, but their individual confidence intervals overlap in 

the top panel. While this might seem contradictory, it is explained by the fact that the formulas 

for the standard errors include some parameters that cancel out when testing for a significant 

difference. In other words, the covariance between the two MPS values is positive, making the 

standard error of their difference smaller.  

Full SNAP Sample 

Figure 4 shows the purchasing path for the full sample of SNAP households. The 

purchasing path drops significantly from the day of benefit receipt (𝑡 = 0) to days 1-3 of the 

cycle. This is true for both SNAP and non-SNAP food expenditures and is consistent with the 

hypothesis of hyperbolic preferences. Specifically, the propensity to spend SNAP on food at 

home (𝑀𝑃𝑆𝑆) falls from 0.94 on the day benefits are received and levels off at about 0.88 over 

the remaining days of the first two weeks (i.e., days 1-14). Over the last two weeks of the benefit 

month, the average SNAP household’s propensity to spend SNAP on food at home continues to 

fall from 0.84 to 0.80. The propensity to spend non-SNAP income (𝑀𝑃𝑆𝐼) has a similar time 

path falling from 0.84 to 0.77 by month’s end.  

We examine the bottom panel for evidence of any compounding effects by testing if the 

difference in MPS is constant over the month. Although there appears to be a slight dip at the 

beginning of the month, we cannot reject the null that they are equivalent. 
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 Our results pertaining to income fungibility and hyperbolic preferences as separate 

phenomena are consistent with previous findings (Fraker Fraker, Martini and Ohls 1995; 

Levedhal 1995; Breunig and Dasgupta 2002, 2005; Shapiro 2005; Mastrobuoni and Weinberg 

2009). One important finding is that fungibility is not just a short-term behavioral response that 

dissipates as the month progresses. Moreover, the difference in MPS between cash and SNAP 

does not change significantly over the entire month, suggesting an insignificant compounding 

effect. Next, we investigate heterogeneity of our results in certain subpopulations. 

SNAP households that use a “commitment mechanism”  

Hyperbolic SNAP households can create an endogenous liquidity constraint on their 

benefits by adhering to some rule-of-thumb. All that is required is the self-imposed constraint be 

committed to one period ahead. For example, to overcome splurging at the grocery store 

households may pre-commit benefits to certain food items. Simply committing to a grocery list 

could function as a self-imposed liquidity constraint. 

We categorize “infrequent grocery list users” as those that reported never or seldom using 

a grocery list. All other households are categorized as “frequent grocery list users.”vi We re-

estimate our model for each type of household: frequent grocery list users in figure 5 and 

infrequent grocery list users in figure 6. Point estimates and standard errors can be found in table 

8. 

For frequent grocery list users we again find that the propensity to spend on food at home 

out of cash and SNAP fall after the first day of the benefit month (Figure 5 and Table 8). In the 

bottom panel we can see the lack of fungibility between SNAP and non-SNAP income is 

relatively flat throughout the month – households tend to spend about $0.04-0.05 more out of a 
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SNAP dollar versus a cash dollar on food at home. Estimates are only marginally significant in 

the last two weeks of the benefit month.  

Looking at infrequent grocery list users (Figure 6 and Table 8), we see inconsistent 

purchasing patterns over the first four days of the benefit month where these households have a 

much higher propensity to spend SNAP on food at home than their own cash. Infrequent grocery 

list users spend $0.24 more on food at home using a SNAP dollar compared to a non-SNAP 

dollar. This stark difference persists over the next three days where we see a 0.17 difference on 

days 1-3. By the latter half of the first week of the benefit cycle, infrequent grocery list users are 

statistically indistinguishable from frequent grocery list users, although the point estimates 

remain slightly higher. 

Two important differences between infrequent and frequent grocery list users emerge. 

First, the difference between the MPS by income source on the day of benefit issuance is about 

five times higher for infrequent list users (0.24 versus 0.05). We believe that frequent grocery list 

users have demonstrated the sort of pre-planning and commitment that likely translates into 

better budgeting skills. As a result, food planning can help mitigate the compounding effects of 

fungibility and impatience, especially on the day benefits are received. Second, the propensity to 

spend a SNAP dollar on food at home on the day of benefit issuance is much higher for frequent 

list users: 0.96 versus 0.85. This again may be an indication that food planning could help 

households pre-commit a larger percentage of food dollars to food at home. Moreover, those 

with better budgeting skills may place a priority on using their resources for purchasing food 

from SNAP eligible venues.  
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Poverty differences 

Households that have higher levels of impoverishment face more severe resource 

constraints than other SNAP households. Given that food is a necessity, a priori, one may expect 

tighter liquidity constraints to force households to be more in tune with their food budgets. On 

the other hand, the severity of poverty is likely to be correlated with (unobservable) budgeting 

and planning skills. 

To test these hypotheses, we divided households into those with income less than 100% 

of the poverty guidelines and those over the poverty guideline.vii Point estimates and standard 

errors for the MPS out of each income source are reported in table 9, and results are presented 

graphically in figures 7 and 8. As shown in the top panels of figures 7 and 8, both types of 

households exhibit evidence of hyperbolic discounting. The bottom panels of the figures reveal 

that households with income above 100% of the poverty guidelines have a consistent difference 

in the MPS out of SNAP and non-SNAP ranging insignificantly from 0.026 to 0.04. Households 

below the poverty line exhibit a much higher propensity to spend SNAP on the day of issuance. 

Specifically, these households spend $0.19 more on food at home out of SNAP than out of 

pocket. This difference in MPS falls to about 0.13 over days 1-6 before leveling around 0.05. 

Thus, in this subpopulation (those below the poverty guideline), an interaction effect appears to 

exist. This evidence suggests that unobservable characteristics (such as budgeting skills in 

general) are driving the differences rather than resource constraints pushing households to be 

more in tune with their food budget.  

SNAP Cycle by Food Category 

We further examine the SNAP cycle across our broad food categories (e.g. healthful, 

unhealthful, perishable and non-perishable) which reveals interesting purchasing patterns. In the 
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first day after receipt, the MPS of SNAP and non-SNAP for healthful foods is significantly larger 

than the rest of the month (Figure 9). After that, however, the MPS for SNAP and non-SNAP are 

not significantly different over time. In contrast, the MPS for SNAP for unhealthful foods 

(Figure 10) is significantly lower in days 1-3, but not significantly different the rest of the month. 

The MPS for non-SNAP is not significantly different across the month.  

 Looking at perishable foods (Figure 11) we see a similar pattern as healthful foods, where 

the MPS of SNAP and non-SNAP are significantly larger in the first day after benefit receipt, 

and then constant over time. The non-perishable foods follow a similar pattern as well (Figure 

12), with the MPS of SNAP being larger in day 0 than days 1-3 and days 4-6. However, the MPS 

for cash is not significantly different over time. 

 Taken all together, these results suggest that the SNAP benefit cycle is primarily driven 

by changes in healthful foods, i.e. foods the HEI suggests should be eaten more often. The same 

can also be said for perishable foods, which by definition, do not last as long. Importantly, 

perishable foods tend to also be fresher, more healthful foods. Unfortunately, this analysis could 

not be run for foods that were also healthful and perishable, due to limited observations in the 

data.  

Free Food Acquisition 

Looking at the acquisition of free food offers important insights into how SNAP 

households may utilize free food over the benefit month. In particular, across all the food 

categories (Table 10) we find that there is a significant increase in free food acquisition on all 

days relative to day 0, which is the reference day. Importantly, after days 1 – 3, the acquisition of 

free food increases significantly as well across all food categories, but for the rest of the month 

(i.e. days 4 – 30) there is not a significant increase in the acquisition of free food. In practical 
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terms, this means a greater share of each food category comes from sources of free food during 

the first week after receiving SNAP benefits. This contrasts with the SNAP benefit cycle, which 

shows a decline in MPS or of SNAP and cash after the first few days of receiving benefits. 

This suggests that free food may be used strategically to offset spending from SNAP and cash 

over the month. This is particularly important given that the primary source of free food for 

SNAP households is the school, presumably school lunches.  

 Looking at calories and other nutritional content (Table 11), we notice a similar pattern 

that is slightly less drastic. Specifically, during the first 3 days, the amount of calories and 

nutrition from free food is not significantly different relative to day 0. After day 4, however, free 

food provides a significantly larger proportion of calories and nutrition. Again, this contrasts 

with the SNAP benefit cycle pattern of purchases. That is, as the propensity to spend on food 

declines the first days after receiving SNAP, the share of food from free sources increases.  

 It is important to note that over the month, the amount of free food acquired does not 

change significantly. Rather, the amount of food purchased decreases, making the share of free 

food relatively larger. Again, this emphasizes the importance of other sources of food for SNAP 

households.  

Conclusions and discussion 

This research investigated the purchasing patterns of SNAP households over the benefit 

month. We find that SNAP households exhibit time-inconsistent preferences and do not view a 

SNAP dollar as fully fungible with a non-SNAP dollar. We also find that these two behavioral 

mechanisms tend to exacerbate the SNAP benefit cycle, especially during the first week of 

issuance.  
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The tendency to make large food purchases at the beginning of the month may be a sign 

that households are stocking up; thus, food consumption could be smoother than food purchasing 

behavior over the month. We cannot directly test this hypothesis because detailed consumption 

data were not collected. Previous research, however, has consistently demonstrated that the 

consumption paths of SNAP households largely follow their purchasing paths (Wilde and 

Ranney 2000 Shapiro 2005; Todd 2014); thus, our finding that the propensity to spend on food at 

home out of SNAP benefits is higher than out of non-SNAP income may be a reason for concern.  

We uncover a previously unknown finding that the propensity to spend on food at home 

out of SNAP is consistently higher than out of non-SNAP income throughout the benefit month. 

We find some evidence that the lack of income fungibility is higher at the beginning of the 

month, indicating that households view SNAP as less fungible when benefits are flush. For low-

income populations in general, the tendency to have a higher rate of spending out of one 

budgeted category may increase the risk to income shocks, particularly at the end of the month.  

The compounding effects of fungibility and impatience are strongest for households that 

do not frequently engage in grocery trip planning (i.e., infrequent users of grocery lists) and 

those who are severely resource constrained (i.e., under the federal poverty guidelines). 

Likewise, we find similar comparisons between SNAP households living above and below the 

poverty guidelines. Again, this higher-than-average MPS out of SNAP is concentrated during the 

first week and levels off throughout the remainder of the month. Households above the poverty 

line, on the other hand, consistently spend more out of SNAP throughout the benefit month. 

Our finding that grocery list users tend to treat SNAP and non-SNAP income in a similar 

manner throughout the benefit month suggests that simple commitment strategies could be taught 

through the SNAP Education program. Guiding households on how to plan and budget their 



Food APS Research at UKCPR – Page 406 
 

benefits may help overcome some of their behavioral shortfalls. Previous authors have also 

suggested increasing the frequency of payments as a potential remedy (Wilde and Ranney 2000; 

Shapiro 2005; Hastings and Washington 2010). Doing so could enforce smoother consumption 

over the month. Some households, however, may prefer to make one large grocery trip per 

month. It might well be the case that these households are constrained in their ability to shop 

more frequently and forcing a bi-monthly or weekly disbursement may increase the cost of 

grocery shopping.  

An alternative policy prescription could be to make bi-monthly or weekly disbursements 

an option when signing up for SNAP. Those who prefer or need a single monthly payment can 

simply enroll in that option. Such an approach would allow households to select into the payment 

option that best suited their needs. We suspect additional transaction costs to be minimal due to 

the electronic nature of the benefit transfer.viii Our results show the benefit-cycle effect is largest 

in the first few days, however, suggesting that the often-recommended policy of bi-monthly 

benefit distribution may not be the cure-all. A possible negative consequence is a reduction in 

participation if the perceived amount of benefits is lower due to the bi-monthly arrangement. 

Our research also sheds light on the types of purchases that might be driving the SNAP 

benefit cycle. In particular, we find that healthful and perishable foods tend to follow the benefit 

cycle pattern, whereas unhealthful and non-perishable foods are purchased more consistently 

throughout the month. This emphasizes the potential nutritional implications of the SNAP 

benefit cycle. Incentives to encourage more healthful purchases throughout the month could 

prove to be beneficial. For example, the Healthy Incentives Pilot (HIP) offers cash back for 

buying fruits and vegetables (Klerman et al 2015; Wilde et al 2015). Such a program could 

possibly encourage more consistent purchases of healthful foods.  
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Finally, we also provide preliminary results highlighting the role that free food plays for 

SNAP recipients. While the SNAP cycle progresses throughout the month and food purchases 

decline, the acquisition of free food increases. This also translates into more calories and 

nutrition from free food. Since free food for SNAP households primarily comes from the school 

lunch program, it is important to consider the year round availability of this resource. To be sure, 

some locations already provide alternative ways to disperse free food outside the school year.  
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Tables 

 

Table 1. Household food purchases aggregated into four groups.  

 healthful unhealthful 

Perishable  dairy, protein, fruit and 

vegetables 

french fries, hash browns 

Non-perishable whole grains, beans nuts, 

canned fish 

snacks, sugar-sweetened 

beverages, refined grains 

 

 
 
 
Table 2. Average Daily Spending for SNAP Households Conditional on a Positive Purchase 

Variable Full Sample Week 1 Weeks 2-4 p-valuea 

Total food expenditures 45.70 62.69 37.17 <0.001 

 (1.85) (3.88) (1.63)  

Food-at-home  39.59 56.13 31.28 <0.001 

    expenditures (1.66) (3.62) (1.45)  

Food-away-from-home  6.11 6.56 5.89 0.554 

    expenditures (0.51) (0.95) (0.60)  

SNAP expenditures 19.95 37.58 11.10 <0.001 

 (1.33) (3.31) (0.87)  

Food-at-home share  0.86 0.88 0.85 0.153 

 (0.01) (0.01) (0.01)  

No. of daily observations 3400 1031 2369  
Note: All calculations use survey weights. Standard errors in parentheses are clustered at the household level. Week 

1 is defined as purchasing days in the first seven days of the diary week. Weeks 2-4 are the rest of the month. 
ap-values represent a two-sample t-test of week 1 versus weeks 2-4. 
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Table 3. Household Characteristics and Total Weekly Expenditure Patterns 

Characteristic  Full Sample Week 1a Weeks 2-4a p-value 

Household size 3.04 3.34 2.88 0.023 

 (0.09) (0.17) (0.10)  

Non-Hispanic White 0.47 0.47 0.47 0.949 

 (0.02) (0.04) (0.03)  

Hispanic 0.23 0.27 0.20 <0.001 

 (0.02) (0.04) (0.02)  

Non-Hispanic Black 0.27 0.25 0.29 0.390 

 (0.02) (0.03) (0.03)  

Child under 6 present 0.29 0.33 0.27 0.179 

 (0.02) (0.04) (0.01)  

Frequent grocery list  0.68 0.73 0.65 0.096 

    user (0.02) (0.03) (0.03)  

Below 100% poverty 0.58 0.54 0.60 0.251 

 (0.02) (0.04) (0.03)  

Total food expenditures 130.04 175.32 105.03 <0.001 

 (6.51) (11.30) (7.46)  

Food-at-home  93.35 140.50 67.31 <0.001 

    expenditures (4.56) (9.75) (3.62)  

Food-away-from-home  36.68 34.81 37.72 0.691 

    expenditures (4.30) (3.53) (6.39)  

SNAP expenditures 47.05 83.19 27.09 <0.001 

 (3.25) (7.53) (2.17)  

Food-at-home share  0.66 0.72 0.62 0.001 

 (0.02) (0.02) (0.02)  

No. of households 1427 446 981  
Notes: All calculations use survey weights.  
a Week 1 households are defined as those that have at least one diary day corresponding to benefits days 0, 1, 2 or 3. 

All other households are defined as Weeks 2-4. 
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Table 4. Household Food-at-Home Expenditures  

  Full Sample 0-3 days Weeks2-4 p-valuea 

Total food expenditure 105.39 151.54 79.90 <0.001 

  (4.74) (9.73) (4.03)   

SNAP expenditure 44.76 80.18 25.20 <0.001 

  (3.18) (7.36) (2.09)   

Healthful food 36.35 58.01 24.39 <0.001 

  (2.17) (4.83) (1.51)   

Unhealthful food 19.75 28.78 14.76 <0.001 

  (1.00) (2.10) (0.85)   

Perishable food 34.46 55.07 23.08 <0.001 

  (2.06) (4.64) (1.42)   

Non-perishable food 35.65 54.31 25.34 <0.001 

  (1.87) (3.95) (1.48)   

Notes: a. Test of statistical difference in expenditures from days 0-3 and weeks 2-4. 
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Table 5. Parameter Estimates from Equation (2) for Full SNAP Sample and by Grocery 

List Usage 

Variables Full Sample Frequent List 

Users 

Infrequent List 

Users 

ln(X) -0.0175*** -0.0087 -0.0490*** 

 (0.0047) (0.0052) (0.0101) 

SNAP purchases 0.0032* 0.0021 0.0086*** 

 (0.0012) (0.0098) (0.0017) 

ln(X) × Days 1-3  -0.0118* -0.0124 -0.0206 

 (0.0071) (0.0129) (0.0154) 

ln(X) × Days 4-6  -0.0116 -0.0202 0.0179 

 (0.0077) (0.0165) (0.0206) 

ln(X) × Days 7-14  -0.0108* -0.0138 0.0027 

 (0.0062) (0.0107) (0.0123) 

ln(X) × Days 15-22  -0.0120* -0.0200* 0.0139 

 (0.0062) (0.0116) (0.0116) 

ln(X) × Days 23-30  -0.0172** -0.0215** -0.0013 

 (0.0076) (0.0104) (0.0167) 

ln(household size) -0.0362*** -0.0495*** -0.0034 

 (0.0112) (0.0139) (0.0200) 

Days 1-3 -0.0366** -0.0242 -0.0560 

 (0.0168) (0.0289) (0.0553) 

Days 4-6 -0.0466*** -0.0527 -0.0497 

 (0.0178) (0.0417) (0.0543) 

Days 7-14 -0.0479*** -0.0554* -0.0394 

 (0.0151) (0.0296) (0.0507) 

Days 15-22 -0.0613*** -0.0740** -0.0569 

 (0.0158) (0.0308) (0.0512) 

Days 23-30 -0.0576*** -0.0807** -0.0129 

 (0.0196) (0.0337) (0.0452) 

Non-Hispanic White 0.0360 0.0401 0.0015 

 (0.0250) (0.0276) (0.0270) 

Non-Hispanic Black -0.0130 -0.0084 -0.0363 

 (0.0273) (0.0307) (0.0277) 

Hispanic -0.0050 -0.0137 -0.0035 

 (0.0291) (0.0329) (0.0284) 

Presence of child < 6 0.0146 0.0583*** -0.0707** 

 (0.0183) (0.0202) (0.0311) 

Constant 0.9793*** 0.9859*** 1.0050*** 

 (0.0282) (0.0339) (0.0515) 

    

sigma 0.2174*** 0.2087*** 0.2256*** 

 (0.0063) (0.0075) (0.0100) 

Observations 3400 2205 1195 

Notes: Dependent variable is the daily share of total food expenditures on food at home. Standard errors in 

parentheses are clustered at the household level. 
* p<0.1, ** p<0.05, *** p<0.01 
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Table 6. Parameter Estimates from Equation (2) for Households Above and Below the 

Poverty Line  

Variables <100% Poverty >100% Poverty 

ln(X) -0.0241** -0.0114* 

 (0.0095) (0.0065) 

SNAP 0.0062 0.0017 

 (0.0137) (0.0028) 

ln(X) × Days 1-3 -0.0118 -0.0130 

 (0.0172) (0.0104) 

ln(X) × Days 4-6  -0.0233 -0.0072 

 (0.0207) (0.0091) 

ln(X) × Days 7-14  -0.0068 -0.0150** 

 (0.0144) (0.0068) 

ln(X) × Days 15-22  -0.0030 -0.0216** 

 (0.0113) (0.0088) 

ln(X) × Days 23-30  -0.0211 -0.0117 

 (0.0153) (0.0102) 

ln(household size) -0.0239* -0.0486** 

 (0.0136) (0.0212) 

Days 1-3 -0.0284 -0.0471** 

 (0.0234) (0.0230) 

Days 4-6 -0.0604** -0.0367* 

 (0.0306) (0.0199) 

Days 7-14 -0.0327* -0.0645*** 

 (0.0195) (0.0217) 

Days 15-22 -0.0510** -0.0693*** 

 (0.0226) (0.0238) 

Days 23-30 -0.0394* -0.0763** 

 (0.0220) (0.0366) 

Non-Hispanic White 0.0116 0.0770** 

 (0.0272) (0.0350) 

Non-Hispanic Black -0.0403 0.0385 

 (0.0293) (0.0416) 

Hispanic -0.0111 0.0125 

 (0.0319) (0.0422) 

Presence of child < 6 -0.0184 0.0419* 

 (0.0237) (0.0236) 

Constant 0.9977*** 0.9527*** 

 (0.0488) (0.0449) 

sigma 0.2092*** 0.2238*** 

 (0.0085) (0.0091) 

Observations 1989 1411 

Notes: Dependent variable is the daily share of total food expenditures on food at home. Standard errors in 

parentheses are clustered at the household level. 
* p<0.1, ** p<0.05, *** p<0.01 
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Table 7. Marginal Propensity to Spend on Food at Home, All SNAP Households 

Time period SNAP Non-SNAP Difference 

Full month 0.8608*** 0.8092*** 0.0516*** 

 (0.0082) (0.0119) (0.0061) 

Day 0 0.9354*** 0.8424*** 0.0930*** 

 (0.0205) (0.0448) (0.0336) 

Days 1-3 0.8751*** 0.8118*** 0.0633*** 

 (0.0197) (0.0316) (0.0164) 

Days 4-6 0.8751*** 0.8245*** 0.0506*** 

 (0.0246) (0.0347) (0.0154) 

Days 7-14 0.8760*** 0.8267*** 0.0493*** 

 (0.0126) (0.0182) (0.0082) 

Days 15-22 0.8468*** 0.8075*** 0.0394*** 

 (0.0135) (0.0178) (0.0061) 

Days 23-30 0.8083*** 0.7653*** 0.0430*** 

 (0.0205) (0.0246) (0.0076) 

Notes: Standard errors in parentheses are clustered at the household level. Marginal propensity to spend (MPS) is 

calculated as the propensity to spend on food at home out of SNAP and non-SNAP food expenditures for the given 

time period. 
* p<0.1, ** p<0.05, *** p<0.01 
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Table 8. Marginal Propensity to Spend on Food at Home, by Grocery List Usage 

Time period SNAP Non-SNAP Difference 

Frequent list users    

Full month 0.8693*** 0.8253*** 0.0440 

 (0.0098) (0.0295) (0.0272) 

Day 0 0.9593*** 0.9119*** 0.0474 

 (0.0189) (0.0547) (0.0463) 

Days 1-3 0.9086*** 0.8648*** 0.0439 

 (0.0194) (0.0503) (0.0386) 

Days 4-6 0.8905*** 0.8318*** 0.0587 

 (0.0274) (0.0603) (0.0459) 

Days 7-14 0.8866*** 0.8483*** 0.0382 

 (0.0134) (0.0313) (0.0267) 

Days 15-22 0.8426*** 0.8062*** 0.0363* 

 (0.0159) (0.0290) (0.0210) 

Days 23-30 0.8030*** 0.7653*** 0.0377** 

 (0.0279) (0.0343) (0.0180) 

Infrequent list users    

Full month 0.8418*** 0.7624*** 0.0793*** 

 (0.0149) (0.0217) (0.0110) 

Day 0 0.8502*** 0.6072*** 0.2430*** 

 (0.0404) (0.0705) (0.0629) 

Days 1-3 0.7942*** 0.6194*** 0.1749*** 

 (0.0384) (0.0664) (0.0534) 

Days 4-6 0.8395*** 0.7960*** 0.0436 

 (0.0488) (0.0706) (0.0292) 

Days 7-14 0.8561*** 0.7709*** 0.0853*** 

 (0.0273) (0.0354) (0.0173) 

Days 15-22 0.8549*** 0.8019*** 0.0530*** 

 (0.0252) (0.0328) (0.0104) 

Days 23-30 0.8222*** 0.7610*** 0.0612*** 

 (0.0241) (0.0360) (0.0167) 

Notes: Standard errors in parentheses are clustered at the household level. Marginal propensity to spend (MPS) is 

calculated as the propensity to spend on food at home out of SNAP and non-SNAP food expenditures for the given 

time period. 
* p<0.1, ** p<0.05, *** p<0.01 
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Table 9. Marginal Propensity to Spend on Food at Home, by Poverty Level 

Time period SNAP Non-SNAP Difference 

Above 100% poverty    

Full month 0.8426*** 0.8054*** 0.0372*** 

 (0.0118) (0.0153) (0.0098) 

Day 0 0.9367*** 0.8983*** 0.0385 

 (0.0215) (0.0400) (0.0247) 

Days 1-3 0.8471*** 0.8071*** 0.0400** 

 (0.0323) (0.0442) (0.0191) 

Days 4-6 0.8791*** 0.8535*** 0.0256* 

 (0.0342) (0.0451) (0.0147) 

Days 7-14 0.8467*** 0.8071*** 0.0396*** 

 (0.0166) (0.0191) (0.0108) 

Days 15-22 0.8191*** 0.7794*** 0.0397*** 

 (0.0209) (0.0262) (0.0121) 

Days 23-30 0.8105*** 0.7833*** 0.0272*** 

 (0.0381) (0.0404) (0.0104) 

Below 100% poverty    

Full month 0.8752*** 0.8002*** 0.0750*** 

 (0.0114) (0.0343) (0.0281) 

Day 0 0.9339*** 0.7455*** 0.1883** 

 (0.0310) (0.1013) (0.0877) 

Days 1-3 0.9014*** 0.7789*** 0.1225** 

 (0.0239) (0.0740) (0.0598) 

Days 4-6 0.8714*** 0.7426*** 0.1288** 

 (0.0351) (0.0790) (0.0595) 

Days 7-14 0.8982*** 0.8358*** 0.0624** 

 (0.0179) (0.0419) (0.0302) 

Days 15-22 0.8713*** 0.8301*** 0.0412** 

 (0.0178) (0.0301) (0.0164) 

Days 23-30 0.8064*** 0.7481*** 0.0583*** 

 (0.0223) (0.0352) (0.0197) 

Notes: Standard errors in parentheses are clustered at the household level. Marginal propensity to spend (MPS) is 

calculated as the propensity to spend on food at home out of SNAP and non-SNAP food expenditures for the given 

time period. 
* p<0.1, ** p<0.05, *** p<0.01 
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Table 10. Share of free food purchased, in grams, over the month by food category 

Variables Dairy Vegetables Grains Fruit Protein 

Days 1-3 0.110* 0.152** 0.093 0.196*** 0.129** 

 (0.060) (0.066) (0.061) (0.074) (0.062) 

Days 4-6 0.153*** 0.159*** 0.131** 0.210*** 0.140** 

 (0.056) (0.060) (0.056) (0.067) (0.059) 

Days 7-14 0.147*** 0.185*** 0.135** 0.238*** 0.162*** 

 (0.054) (0.057) (0.054) (0.066) (0.057) 

Days 15-22 0.176*** 0.202*** 0.174*** 0.271*** 0.203*** 

 (0.055) (0.058) (0.055) (0.066) (0.057) 

Days 23-30 0.177*** 0.202*** 0.182*** 0.263*** 0.173*** 

 (0.054) (0.057) (0.055) (0.065) (0.057) 

Log(HH size) -0.047*** -0.080*** -0.085*** 0.004 -0.082*** 

 (0.017) (0.018) (0.017) (0.025) (0.017) 

Non-Hispanic White 0.001 0.064 0.001 -0.013 0.032 

 (0.044) (0.058) (0.046) (0.052) (0.050) 

Non-Hispanic Black 0.060 0.107* 0.040 0.061 0.091* 

 (0.046) (0.059) (0.048) (0.053) (0.051) 

Hispanic 0.027 0.055 0.028 -0.027 0.071 

 (0.047) (0.060) (0.048) (0.055) (0.051) 

Presence of child < 6 -0.016 -0.007 -0.007 0.009 -0.008 

 (0.019) (0.020) (0.019) (0.023) (0.020) 

HH average income -0.001 -0.001 -0.000 -0.001 -0.001 

 (0.002) (0.003) (0.002) (0.002) (0.002) 

Constant 0.589*** 0.524*** 0.610*** 0.484*** 0.583*** 

 (0.073) (0.083) (0.074) (0.091) (0.079) 

Observations 2573 2636 2743 2024 2561 
Notes: Standard errors in parentheses and clustered at the household level. 
* p<0.1, ** p<0.05, *** p<0.01 

For all models, days 1-3 are statistically lower than Days 4-6 and beyond. 
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Table 11. Share of free food purchased, in grams, over the month by calories and nutrients 

 calories carbs fat added sugar 

Days 1-3 0.069 0.075 0.078 0.077 

 (0.058) (0.058) (0.059) (0.063) 

Days 4-6 0.115** 0.120** 0.114** 0.140** 

 (0.054) (0.054) (0.054) (0.058) 

Days 7-14 0.115** 0.123** 0.119** 0.154*** 

 (0.051) (0.052) (0.052) (0.056) 

Days 15-22 0.135*** 0.153*** 0.135** 0.177*** 

 (0.052) (0.052) (0.053) (0.056) 

Days 23-30 0.160*** 0.172*** 0.148*** 0.189*** 

 (0.052) (0.052) (0.053) (0.055) 

Log(HH size) -0.102*** -0.099*** -0.103*** -0.110*** 

 (0.017) (0.018) (0.017) (0.019) 

Non-Hispanic White 0.002 -0.008 0.013 0.030 

 (0.046) (0.048) (0.046) (0.051) 

Non-Hispanic Black 0.050 0.036 0.059 0.049 

 (0.048) (0.049) (0.048) (0.053) 

Hispanic 0.016 0.007 0.022 0.049 

 (0.049) (0.051) (0.049) (0.054) 

Presence of child < 6 -0.007 -0.005 -0.014 -0.009 

 (0.019) (0.020) (0.019) (0.021) 

HH average income -0.000 -0.000 -0.000 -0.000 

 (0.002) (0.002) (0.003) (0.002) 

Constant 0.592*** 0.585*** 0.610*** 0.550*** 

 (0.072) (0.073) (0.072) (0.079) 

Observations 2884 2870 2882 2773 
Notes: Standard errors in parentheses and clustered at the household level. 
* p<0.1, ** p<0.05, *** p<0.01 

For all models, days 1-3 are statistically lower than Days 4-6 and beyond. 
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Figures 

 

Figure 1. Average daily expenditures over the benefit month 

 

Notes: The disbursement of SNAP benefits occurs on day 0. 
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Figure 2. Sources of Free Food for SNAP households 
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Figure 3. Sources of Free Food for non-SNAP households 
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Figure 4. Marginal propensity to spend on food at home, all SNAP households 

 

Notes: All point estimates are accompanied by 95- % confidence intervals and correspond to a range of days since 

benefit receipt shown on the top x-axis as “bin size.” Standard errors are clustered at the household level. See table 5 

for estimates.
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Figure 5. Marginal propensity to spend on food at home, frequent grocery list users 

 

Notes: All point estimates are accompanied by 95- % confidence intervals and correspond to a range of days since 

benefit receipt shown on the top x-axis as “bin size.” Standard errors are clustered at the household level. See table 6 

for estimates.  
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Figure 6. Marginal propensity to spend on food at home, infrequent grocery list users 

 

Notes: All point estimates are accompanied by 95- % confidence intervals and correspond to a range of days since 

benefit receipt shown on the top x-axis as “bin size.” Standard errors are clustered at the household level. See table 6 

for estimates.  
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Figure 7. Marginal propensity to spend on food at home, >100% of poverty guidelines 

 

Notes: All point estimates are accompanied by 95- % confidence intervals and correspond to a range of days since 

benefit receipt shown on the top x-axis as “bin size.” Standard errors are clustered at the household level. See table 7 

for estimates.  
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Figure 8. Marginal propensity to spend on food at home, <100% of poverty guidelines 

 

Notes: All point estimates are accompanied by 95- % confidence intervals and correspond to a range of days since 

benefit receipt shown on the top x-axis as “bin size.” Standard errors are clustered at the household level. See table 7 

for estimates. 
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Figure 9. Marginal propensity to spend on healthful food 

 
 
Notes: All point estimates are accompanied by 95- % confidence intervals and correspond to a range of days since 

benefit receipt shown on the top x-axis as “bin size.” Standard errors are clustered at the household level. 
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Figure 10. Marginal propensity to spend on unhealthy food  

 
Notes: All point estimates are accompanied by 95- % confidence intervals and correspond to a range of days since 

benefit receipt shown on the top x-axis as “bin size.” Standard errors are clustered at the household level. 
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Figure 11. Marginal propensity to spend on perishable food 

 
 
Notes: All point estimates are accompanied by 95- % confidence intervals and correspond to a range of days since 

benefit receipt shown on the top x-axis as “bin size.” Standard errors are clustered at the household level. 
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Figure 12. Marginal propensity to spend on nonperishable food 

 
 
Notes: All point estimates are accompanied by 95- % confidence intervals and correspond to a range of days since 

benefit receipt shown on the top x-axis as “bin size.” Standard errors are clustered at the household level. 
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i Income fungibility, or the idea that “money in one mental account is not a perfect substitute for money in another 

account” (Thaler 1999), has also been investigated as a ‘cash-out effect’ (e.g.,Moffitt 1989) and a ‘labeling effect’ 

(e.g,, Kooreman 2000). 
ii Specifying 𝐷𝑡 as a continuous variable fails to capture the stark nonlinearities of the SNAP cycle. We also 

considered other bin widths for 𝐷𝑡 and came to similar conclusions. Likewise, 𝐷𝑡 could take on a high-order 

polynomial or be fully nonparametric through the use of a kernel. 
iii Administrative data was linked to the sample in an attempt to confirm current SNAP enrollment. Over 82% of our 

sample was confirmed (N=1,172). A small portion (N=26) did not grant permission for data matching, and the 

remaining 229 households could not be linked due to administrative data limitations. Results are robust to excluding 

the latter two groups although estimates are not as precisely estimated.  
iv During the survey week, there are multiple occasions where the household does not make a food purchase. 

Consequently, the dependent variable of equation (4) is often zero. We view these zeros not as censoring, rather as 

actual choices to not shop. In other words, a censored tobit approach would not be appropriate. We attempted to 

account for the decision to make a purchase on a given day using a Heckman two-step approach (Heckman 1979). 

Our exclusion restrictions included indicators for the diary day (1-7) and month of the year. The parameter estimate 

on the inverse Mills ratio is insignificant in all specifications. Moreover, likelihood ratio tests cannot reject the null 

that the models are equivalent. Consequently, our estimated are based on non-zero purchase days.  
v Previous studies investigating the marginal propensity to spend on food out of SNAP typically use the monthly 

SNAP benefit allotment rather than actual SNAP spending; these studies find varying estimates falling between zero 

and one due to study design, survey period and methodological approach (Cuffey, Beatty and Harnick, 2014).    
vi We also considered placing households that report using grocery lists sometimes in the infrequent user category. 

Result did not change substantially.  
vii SNAP eligibility is set at 130 percent of the poverty guidelines.  
viii Shapiro (2005) provides a back-of-the-envelope calculation of increased transaction costs due to more frequent 

disbursements using data from Maryland in 1993. These calculations are however and they precede the move to 

electronic benefit transfer (EBT) in 2003. 
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Abstract 

Policymakers are pursing initiatives to increase food access for low-income households. 

However, due in part to previous data deficiencies, there is still little evidence supporting 

the assumption that improved food store access will alter dietary habits, especially for the 

poorest of U.S. households. This article uses the new National Household Food 

Acquisition and Purchase Survey (FoodAPS) to estimate consumer food outlet choices as 

a function of outlet type and household attributes in a multinomial mixed logit. In 

particular, we allow for the composition of the local retail food environment to play a role 

in explaining household store choice decisions and food acquisition patterns. We find that 

(1) households are willing to pay more per week in distance traveled to shop at 

superstores, supermarkets, and fast food outlets than at farmers markets and smaller 

grocery stores, and (2) willingness to pay is heterogeneous across income group, 

Supplemental Nutrition Assistance Program (SNAP) participation, and other household 

and food environment characteristics. Our results imply that policymakers should consider 

incentivizing the building of certain outlet types over others, and that Healthy Food 

Financing Initiatives should be designed to fit the sociodemographic composition of each 

identified low-income, low-access area in question. 
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Introduction 
 

The 2014 Farm Bill allocated $125 million to the USDA for a national Healthy Food Financing 

Initiative (HFFI)—an initiative to eliminate food deserts by incentivizing retailers to do business in 

these areas. As Rep. Schwartz (PA-13) summarizes the goal of this legislation, “by establishing 

healthier food options in underserved areas, millions of Americans will have the opportunity to live 

longer, healthier lives, saving billions in health care costs.” Financing for the HFFI comes after 

numerous studies indicating a link between disparities in access to healthy foods and poor health 

outcomes.1 However, despite the growing body of research on food deserts and health outcomes, there 

is limited evidence supporting the assumption that improved access will alter eating patterns 

(Kyureghian and Nayga 2013). In fact, Cummins, Flint, and Matthews (2014) evaluate the impact 

of opening a new supermarket in a food desert and find that while the intervention increased residents’ 

awareness of food accessibility, it did not lead to changes—over the four years of the study—in 

dietary habits. 

While programs under the HFFI address the supply of retail food stores, both supply and demand 

forces (e.g., consumer preferences, population and income growth, adoption of the Supplemental 

Nutrition Assistance Program (SNAP) and other income support programs) determine the number 

and types of food stores to which consumers have access (Bonanno 2012). In light of these dual 

forces, it is important to understand the current determinants of store choice among low-income 

households before implementing policies that incentivize retailers to do business in food deserts. With 

this objective in mind, our research asks (1) which types of food-at-home (FAH) and food-away-from-

home (FAFH) outlets do households prefer, (2) how much are households willing to pay in distance 

traveled to shop at various outlet types, and (3) how do these revealed preferences vary among SNAP 

participating and non-participating low-income households? 
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To answer these questions, we employ a multinomial mixed logit demand model, common in the 

discrete choice literature, and data from the USDA’s new National Household Food Acquisition and 

Purchase Survey (FoodAPS). The unique FoodAPS datasets contain detailed information about the 

foods purchased or otherwise acquired by surveyed households for consumption at-home and 

away-from-home. These data allow us to address holes in the existing literature which are vital to 

understanding store choice and to implementing policies to improve food access. 

This article builds upon a long literature examining food store choices. An early study by 

Arnold, Oum, and Tigert (1983) finds that the determinants of store choice among FAH shoppers 

includes lowest overall prices, location, convenience, courteous service, the variety of merchandise, fast 

checkout, and quality of meat and produce. Store patronage is also influenced by household 

characteristics—such as demographics and past purchase history (Staus 2009)—and by characteristics 

of the entire local food market—such as the physical availability of different types of retail stores 

(Feather 2003; Kyureghian and Nayga 2013; Kyureghian et al. 2013), the degree of competition 

between food stores (Hausman and Leibtag 2007) and prices offered by various outlet types (Broda et 

al. 2009). 

However, we identify three gaps in the store choice literature that the FoodAPS data allow us 

to fill. First, data constraints have restricted the ability of previous studies to focus on the store 

choices of target populations: low-income and SNAP participating households (Kyureghian et al. 

2013). Unlike other datasets in the store choice literature, the FoodAPS data are designed to be 

nationally representative of SNAP households and non-participant households in three income 

groups: (1) incomes below 100% of the Federal Poverty Line (FPL); (2) incomes between 100 and 

185% of FPL; and (3) incomes at or above 185% of FPL. 
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With food purchase and acquisition data for 1,483 SNAP participating households, 1,353 el- igible but 

not participating households, and 1,825 non-eligible non-participating households, the FoodAPS data 

allow us to focus our analysis on the very households for which HFFI policies are most concerned. 

Second, no study to our knowledge has examined store choice across both FAH and FAFH 

outlets. Staus (2009), Kyureghian and Nayga (2013), and Kyureghian, Nayga, and Bhattacharya 

(2013) examine store choice among FAH stores using multinomial logit models and household home-

scan data—data from a panel of households supplied with handheld scanners to scan the universal 

product codes of all purchases made for at-home consumption.2 While home-scan datasets contain rich 

information on households and their FAH purchases over time, they do not include FAFH purchases. 

Given that Americans spend nearly half of their food dollars away from home—at restaurants, 

hotels, and schools (Stewart et al. 2004)—this is an important data limitation. With the FoodAPS 

datasets we are able to address these previous data limitations and examine low-income households’ 

store choices both among and between various FAFH and FAH outlet types. 

The third important attribute of the FoodAPS data for our empirical strategy is its ge- ographic 

component, which enables us to construct detailed pictures of the individual retail environments in 

which the sampled households live. Previous studies have needed to rely on broad area-based 

measures of food access instead of individual-level measures (Ver Ploeg et al. 2015). Area-based 

measures include supermarket density within Metropolitan Statistical Areas or Census Blocks. 

Conversely, the FoodAPS geographic component includes data on the precise distance between 

retail food outlets visited and each household’s residence, as well as the number and types of outlets 

in proximity to each household. We hypothesize that distance from home plays a significant role in 

explaining store choice decisions and purchasing patterns for both FAH and FAFH consumption. 
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Using a discrete choice structural model of consumer behavior (McFadden 1973; Berry 1994; 

McFadden and Train 2000), we specify that a consumer has several food outlet alternatives where he 

or she can acquire food, and those alternatives are defined as a bundle of perceived attributes—

namely, outlet type and distance from home. This provides the frame- work to compute consumers’ 

willingness to pay for outlet attributes in a straightforward way and offers flexibility in incorporating 

heterogeneity with regard to household types. In our model, households have nine discrete outlet 

categories from which to choose. For FAFH out- lets we consider (1) fast food and (2) full-service 

restaurants. For FAH outlets we consider (3) supermarkets, (4) superstores, (5) grocery stores, (6) 

combination retailers, (7) convenience stores, and (8) farmers markets. Lastly, for the outside option we 

consider (9) other category, which includes all remaining means of acquiring food. We will estimate 

the choice model, first, for the entire FoodAPS sample, and second, for subsamples of households—

based on SNAP participation, income, measures of food access, and stated preferences—in order to 

capture heterogeneity by household type. 

To preview our results, we find that households have the highest willingness to pay for 

superstores, supermarkets, and fast food, at approximately $15 per week in distance traveled. Equating 

these estimates to dollars per mile, FoodAPS households are willing to pay $2.50 per week to have a 

superstore or supermarket one mile closer to their home and $2 per week for a fast food outlet to be 

one mile closer to home. Conversely, households would need to be compensated on average to shop 

at the remaining four FAH outlets. These willingness to pay estimates are heterogeneous across SNAP 

participation, income, and outlet accessibility. 

As a comparison, Feather (2003) finds that improving store access by creating supermarkets that 

are close to SNAP recipients results in a gain in welfare ranging from $2 to $8 per month. However, 

Feather’s (2003) data include only SNAP recipients in one city, and his welfare estimates consider 

only the benefits of building a supermarket closer to recipients, and not the benefits from other outlet
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types. Our results imply that policymakers should consider incentivizing the building of certain outlet 

types over others, and that Healthy Food Financing Initiative incentives should be designed to fit the 

sociodemographic composition of each identified low-income, low-access area in question. 

FoodAPS Data 

 

We use the unique food acquisition data obtained from the USDA’s National Household Food 

Acquisition and Purchase Survey (FoodAPS).3 A total of 4,826 households completed the survey 

between April 2012 and January 2013. The FoodAPS survey collected detailed information about 

all foods purchased or otherwise acquired, from all food sources and by all household members, over 

the course of seven days. The primary respondent (PR) for each household—i.e., the main food 

shopper or meal planner—provided information about the household and individuals in the 

household through two in-person interviews. These interviews collected household demographics and 

information about the household related to food purchases, intake, and diet/health. In addition to the in-

person interviews, households were asked to scan barcodes on food, save their receipts from stores 

and restaurants, and write information in provided food books. Three phone calls with the PR 

occurred over the week to collect additional information.  Together, these records describe 15,999 food-

at-home (FAH) acquisition events and 38,869 food-away-from-home (FAFH) acquisition  events. 

Crucial to our research question and empirical design, the FoodAPS datasets contain a 

geographic component. After the interviews, data on the distances to food outlets from each 

household’s residence (or from the center of the household’s census block group) were collected and 

processed. The geographic component not only includes distance measures for the food outlets 

actually visited by the household during the week (i.e. each food event recorded has a distance-from-

home measure), it also contains distance measures for the food outlets each household could have 

visited within their Primary Sampling Unit or within adjacent PSUs.4 Having information on stores 

in adjacent PSUs means that access to food outlets is measured without border constraints for all 
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households. In particular, for six FAH outlet categories and two FAFH outlet categories, we have the 

distance from each household’s residence to the closest outlet of each category as well as the number 

of outlets of each category within a 1 mile radius. With these data, we are able to construct 

comprehensive pictures of the local food environments in which the surveyed households live.5 

Previous studies, constrained by limited geographic data, were forced to examine retail environments 

at a much broader level. For instance, Kyureghian and Nayga (2013), in one of the studies most 

similar to this article, use county business pattern data on the number of establishments in 100 square 

miles. 

Another unique feature of the FoodAPS data is that the survey was designed to be representative 

of SNAP households and nonparticipant households in three income groups: those with incomes below 

100% of the Federal Poverty Line (FPL), between 100 and 185% of FPL, and above 185% of FPL.6 

The SNAP and low-income non-participant groups were oversampled to allow analysis of food 

spending and shopping patterns specifically for these groups, which has not always been possible with 

other surveys or data collection efforts. We will often refer to non-SNAP participating households 

with incomes below 185% as “eligible non-SNAP” and with incomes above 185% as “non-eligible 

non-SNAP”.7 Tables 1, 2, and 3 present weighted summary statistics of the FoodAPS households, for 

both the full sample of respondents and for mutually exclusive subgroups based on income and SNAP 

participation. Means in all three tables are weighted using household weights to account for 

oversampling and the complex survey design of FoodAPS. Faded text indicate the estimate is not 

statically different at the 5% significance level from the reference group (SNAP households). While 

4,826 households completed the survey, we restrict our analysis to 4,661 households that report 

food acquisition events as well as interview data. 

Table 1 describes the weekly food store choices made by the households, with food events divided 

into nine mutually exclusive outlet types—1) Superstore, 2) Supermarket, 3) Grocery, 4) Combo 
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Retail, 5) Convenience, 6) Farmers Market, 7) Restaurant, 8) Fast Food, and 9) Other Category.8 

Superstore includes large retail establishments that combine a supermarket and department store 

under one roof. They are considered a one-stop shop for all of the customer’s needs. Supermarket 

includes large grocery stores that offer customers a variety of food items and non-food household 

supplies, generally related to food items, such as garbage bags and storage containers. Grocery 

Store includes establishments that are smaller than Supermarkets and sell primarily, or exclusively, 

food items. Combo Retail includes dollar stores, pharmacies, express grocery stores, and small grocery 

stores combined with a restaurant. Convenience includes establishments with extended hours, in 

convenient locations, stocking a limited range of household goods and groceries. Restaurant 

includes full-service restaurants, where customers are seated at tables while servers take their full 

order. Fast Food includes quick-service restaurants, which capitalize on speed of service and 

convenience, and typically have a service counter with cashiers working to take orders. Finally, 

Other Category includes all remaining locations to obtain food, such as meals at work and at school, 

meals at a friend or family member’s home, and food from vending machines, places of worship, 

clubs, and food pantries. 

In table 1, we see that the average household in our overall sample (column 1) spends the most per 

week at Superstore outlets ($56.78), followed by Supermarket ($39.58), Restaurant ($26.73), and Fast 

Food ($20.10). The average household also makes approximately one trip per week to Superstore, 

Supermarket, and Restaurant outlets and two trips per week to Fast Food.9 The average distance from 

home to FAH stores visited over the week is between 4-10 miles while the average distance from home 

to FAFH stores visited is between 10-13 miles.10 In comparing SNAP and non-SNAP households, non-

eligible non-SNAP households (column 5) spend significantly more at Farmers Market, Restaurant 

and Fast Food outlets than all SNAP-eligible households (columns 2-4). Non-eligible households 

also spend more at Superstores and Supermarkets than eligible non-SNAP households (columns 3-4); 
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however, their spending at these outlets is statistically indistinguishable from SNAP households 

(column 2). SNAP households make more trips per week to Combo Retail, Convenience, and Other 

Category outlets than eligible non-SNAP households and they make fewer trips to Restaurant and 

Fast Food outlets than non-eligible non-SNAP households. The average distance SNAP households 

travel to food outlets is not statistically different than eligible non- SNAP households. However, in 

comparison to non-eligible non-SNAP households, SNAP households travel shorter distances to Fast 

Food, Restaurant Convenience, and Combo Retail outlets, and they travel farther to Farmers 

Market. 

It is important to note here that expenditures for SNAP households include the SNAP benefits 

they spend, and that SNAP benefits cannot be used at all outlet types equally. For instance, SNAP 

benefits cannot be used to purchase non-food items, alcoholic beverages, tobacco products, any 

foods that will be eaten in-store, or any foods marketed as heated in-store.11 Therefore, SNAP 

benefits cannot be used at Restaurant and Fast Food outlets. Castner and Henke (2011) find that 

approximately 64% of Electronic Benefit Transfer (EBT) purchases in 2009 were made at 

Supermarkets and Superstores, 15% were made at Convenience stores, and 12% were made at 

Groceries. In the FoodAPS data, we find that approximately 95% of Superstores and Supermarkets 

visited are authorized to accept SNAP benefits, 91% of Combo Retail, 76% of Grocery Stores, 

46% of Convenience, 16% of Farmers Markets, 1% of the Other Category, and as we would expect, 

0% of Fast Food and Restaurants. 

Table 2 describes the retail food environment in which the FoodAPS households live, again 

employing the nine mutually exclusive outlet categories.12 In looking at the number of outlets within 

one mile of each household’s residence, we find that households in the overall sample (column 1) have 

approximately one Superstore and Supermarket, four Convenience, five Fast Food, and 25 Restaurant 

outlets within a mile of their home. Correspondingly, the average distance from each household’s 
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residence to the closest Superstore and Supermarket is 3 miles, to the closest Fast Food, Convenience, 

and Combo Retail outlet is 2 miles, and to the closest Restaurant is 1 mile. The average distance 

to the closest Farmers Market is 12 miles, making it the farthest outlet category from home on 

average. 

We examine four additional measures of the food environment and food access—population density 

of the FoodAPS households’ census block group, share of households living in rural census tracts, 

share of households living in a census block groups identified as a food desert, and share of households 

without car access. We use the USDA’s definition of a food desert.13 A census block group is 

identified as a food desert if: (1) it qualifies as a “low-income com- munity” based on having a 

poverty rate of 20 percent or greater; AND (2) it qualifies as a “low-access community” based on 

the determination that at least 33% of the population live more than 1 mile from a supermarket or large 

grocery store (or 10 miles in the case of rural census block groups). Car access is based on survey 

questions about whether the household owns or leases a vehicle and whether the household receives 

rides from others or has access to borrow a vehicle. For the overall sample, the average population 

density is 5013 persons per square mile, 33% of households live in rural areas, 5% live a food desert, 

and 5% do not have access to a vehicle. 

Once again comparing SNAP and non-SNAP households, we find little statistically significant 

difference in the retail food environments of SNAP and eligible non-SNAP households. However, 

SNAP households have more Supermarket, Combo Retail, and Convenience outlets in a 1-mile radius 

of their homes than non-eligible non-SNAP households. The population density around SNAP 

households is also higher than non-eligible non-SNAP households, and SNAP households are more 

likely to live in a food deserts (9%) and to report not having car access (15%) than non-eligible non-

SNAP households. 

Finally, table 3 presents household (HH) and primary respondent (PR) characteristics. On 
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average, SNAP households are larger than non-SNAP households, are more likely to have children, 

are less likely to have elderly members, and are less likely to report being food secure.14 The PR of 

SNAP households are younger, more likely to be female, and less likely to have a Bachelor’s Degree.  

During the initial interview, the PR was asked to state their primary food store and their reason for 

shopping at this store. With respect to reasons for shopping at primary stores, the question had eight 

pre-coded responses (including “other”) and a respondent could select more than one response. 

Prices and closeness to home are the top two reasons stated across all respondents. SNAP and eligible 

non-SNAP households state similar preferences, with the exception that SNAP households are more 

likely to care about prices. Finally, non-eligible non-SNAP households care more about good 

produce, variety, and closeness-to-home than all other households. 

The Choice Model 

 

We model household food store choices with a random utility discrete choice structural model using 

a multinomial mixed logit (McFadden 1973; Berry 1994; McFadden and Train 2000; Nevo 2000; 

Kyureghian and Nayga 2013). We specify that a household has several outlet alternatives for 

acquiring food, and those alternatives are defined as a bundle of perceived attributes, namely outlet 

type and distance from home. This modeling approach, combined with the representative sampling 

design in the FoodAPS data, allows the estimation of household utility for outlet characteristics 

among SNAP and non-SNAP households. It also provides a framework to compute household 

willingness to pay in distance traveled for each of the outlet categories. 

We allow households to choose between nine outlet categories for purchasing food-at- home 

(FAH) and food-away-from-home (FAFH). For FAFH we consider Fast Food (FF) and Restaurant (R) 

outlets; for FAH we consider Superstore (SS), Supermarket (SM), Grocery Store (GS), Combo 

Retail (CR), Convenience (C), and Farmers Market (FM) outlets, and for the outside option we 

consider Other Category (OC) outlets.15
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The indirect utility of choosing alternative j = FF, R, SS, SM, GS, CR, C, FM, OC at period t 

by household i is given by: 

 
 

(1) Uijt  = αt + αj  + βiXijt + εijt + Eijt. 
 

 

 

Outlet type dummies, αj , capture any differences between outlets that are time invariant and time 

dummies, αt, control for changes over time (i.e., holidays and seasons) common to all outlet types. 

The matrix Xijt contains the attributes of outlet type j at time t (i.e., distance from home), the vector 

βi represents the marginal utility placed on each of the X attributes. The error term εijt captures 

determinants of household marginal utility that are unobserved to the econometrician but seen by the 

household when making choices, while Eijt captures all remaining (unobserved to all) determinants of 

utility. 

Distributional assumptions about βi  and Eijt  drive the econometric  model choice.  If we assume 

that Eijt  are independently and identically distributed extreme value (type I), then we have a logit 

choice model. If we specify that βi  =  β + σz Zi, then we have  a mixed logit. The mixed logit store 

choice model captures preference heterogeneity by estimating an average (among the households) 

marginal utility with respect to the observed attributes, β, and also estimates a standard deviation 

from that mean marginal utility, σz , given Zi household observable attributes. 

We normalize the mean utility of the outside option, Other Category (OC), to zero, such that 

the indirect utility from the outside option only is given by the idiosyncratic error term,  that  is,  

UiOCt  =  EiOCt.   Assuming that households visit the alternative j at a certain time t that maximizes 

their indirect utility, then the probability that alternative j = FF, R, SS, SM, GS, CR, C, FM, OC 

is chosen is the probability that Uijt > Uikt ∀k which has the form: 
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(2) Prijt = 
 𝑒𝛼𝑗 

+ 𝛼𝑡 
+ 𝛽𝑖𝑋𝑖𝑗𝑡 

+ 𝜀𝑖𝑗𝑡

1+ ∑ 𝑒𝛼𝑘 
+ 𝛼𝑡 

+ 𝛽𝑖𝑋𝑖𝑘𝑡 
+ 𝜀𝑖𝑘𝑡

8
𝑘=1

 

 

We estimate the multinomial mixed logit model using the Berry (1994) approach to linearize 

the choice model equation. Taking the log of the probability of an alternative j and subtracting the log 

of the probability of the outside option yields a linear equation to which we can apply OLS: 

 
 

(3) ln(prijt) − ln(priOCt) = αj + αt + βiXijt + εijt. 
 

 

 

As the empirical analogue of probabilities, we will use household share of expenditures spent by 

outlet type, such that we estimate: 

 
 

(4) ln(sijt) − ln(siOCt) = αj  + αt + βiXijt + εijt. 
 

 

 

where sijt  is household i’s share of expenditures made at outlet type j during the seven days 
 

of the survey.   Thus the outlet choice model is obtained by regressing the log difference of eight observed 

outlet expenditure shares relative to the outside option on the variables entering the mean utility.
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i 

i 

Estimation Concerns 

Before discussing the results of the outlet choice model, there are four estimation concerns to 

address: (1) zero weight on free food events, (2) omitted outlet-level price data, (3) unobserved 

outlet attributes correlated with distance, and (4) location endogeneity. 

First, an issue with using expenditure shares as the empirical analogue of choice probabilities is 

that it does not account for food events that were “free” or without expenditures. This happens for 

instance when eating at a friend’s house or at a place of worship. By using expenditure shares, our 

model ignores free-food events by giving them zero weight. Since we categorize free-food events 

into the outside option, Other Category, our model may underestimate the mean utility of the Other 

Category relative to the remaining eight outlet categories. However, importantly, the mean utility 

estimates of the remaining eight categories relative to one another are unaffected by the omission of 

free-food events. 

Second, prices—while an important outlet type attribute—are omitted from the model. Once 

price data are available in the FoodAPS geographic component, future work will include measures 

of food prices by outlet type and food category in the bundle of outlet type attributes. However, as 

long as outlet type j always has higher prices than outlet type k, the time-invariant differences in 

prices will be captured by the outlet type fixed effects. 

The third estimation concern relates to omitted variable bias due to unobserved outlet

attributes correlated with distance.  The vector 𝛽𝑖
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 represents the marginal utility 

 

household i places on distance.  We hypothesize that  βdistance
 will be negative, as greater 

 

distance from home brings disutility to households. However, there may be reasons, known to the 

household yet unseen by the econometrician, for why a household does not go to the
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closest outlet to their home of a given outlet type. For instance, a particular outlet may be chosen 

because it is on route to another destination, or because it is running a promotion that week. If not all of 

the outlet characteristics are observed and these unobserved attributes are correlated with the 

observed distance chosen, then we are faced with endogeneity due to these missing attributes. To 

address this potential missing variable bias, we instrument the distance chosen by the household to 

a given outlet type with a characteristic of the food environment that generates variation in distance 

yet is predetermined to the house- hold’s week-to-week store choices—namely, the distance from 

home to the closest outlet of the given type. This instrument strategy rests on the assumption that the 

instrument is uncorrelated with the unobserved outlet attributes and demand shocks. Since distance 

from home to the closest outlet of the given type is predetermined to the household’s week-to-week store 

choices, and thus cannot react to demand shocks, we argue our instrument is exogenous to the omitted 

reasons households choose one outlet over another outlet during the sample week, and consequently 

addresses the omitted variable bias. However, it is important to note that if the presence of outlets 

close to where households live impacts store choice not only through distance traveled, the validity of 

the exclusion assumption would be impaired. A final estimation concern, widely acknowledged in 

the store choice literature, is that household locations and store locations are endogenous. Retailers 

consider population characteristics in deciding where to locate and households consider retail 

amenities in deciding of where to live (Ver Ploeg et al. 2015). Kyureghian and Nayga (2013) address 

the potential endogeneity of retail environment variables with store choice by using lagged values of 

the retail environment. Alternatively, Currie et al. (2010) rely on the geographic detail of their data to 

defend their identification, finding no evidence of endogenous store placement  when 
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examining small distances and in the presence of a large array of household controls. While we do not 

have lagged values of our distance measures, we have remarkably rich household and food 

environment data in FoodAPS. Thus, we will follow Currie et al. (2010) and present a specification of 

the model controlling for a wide assortment of household and local food environment characteristics. 

Results 

 

The results are presented as follows. Table 4 reports the mean utility estimates for the outlet 

choice model, comparing OLS and IV specifications and the inclusion of various controls. Table 5 

reports the mean utility estimates of the preferred specification, for the entire sample of households as 

well as for subsamples of households by SNAP participation and income group. Finally, table 6 

reports heterogeneity in the mean utility estimates with respect to car access and food desert status, 

urban/rural status, and the stated reasons for primary store choice. 

Mean Utility Estimates for the Food Outlet Choice Model 

 

The first column in table 4 contains an OLS specification and has as independent variables the 

average distance from home traveled to each of the outlet categories,16 outlet category dummies, and 

a constant term referring to the omitted outlet category (Supermarket). It also includes week-in-year 

fixed effects to control for seasonality17 and a rich set of controls for household characteristics.18 

Column 2 contains the IV specification of column 1, where we instrument the average distance to an 

outlet category chosen with the predetermined distance to the closest outlet of that category.  If 

households choose the closest outlet of a particular type most often, then the OLS estimates in 

column 1 will be very similar to the IV estimates in column 2. Column 3 repeats the IV specification 

in column 2 without the household characteristics and column 4 further removes the week-in-year fixed 

effects. 

In the OLS specification (column 1), an increase in the distance from home of an outlet type is 
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correlated with an increase in mean utility. However, when we instrument for distance (column 2), the 

point estimate for distance becomes negative, now indicating that an increase in distance from home 

leads to a decrease in mean utility. Thus the instrument is correcting a positive missing variable bias 

in the OLS estimate, where there are factors unseen by the econometrician for why a household 

does not go to the closest outlet to their home of a given outlet type. However, while the point 

estimate switching from positive to negative is reassuring, bias may persist if either the instrument 

impacts store choice not only though distance traveled, or there are shocks common to some stores, 

such as a gasoline price shock. A gasoline price shock would affect the choice of going to stores close 

to one another, which would not be corrected with our distance to other store instrument. At the 

bottom of table 4 we report the first-stage R-squared, the first-stage F-Test, and the first-stage 

coefficient for the instrument. The first-stage R-squared and F-statistic in all IV regressions are 

high, suggesting that the instrumental variable has power. Also, as we would expect, a one mile 

increase in the distance to the closest outlet of a given type corresponds to a one mile increase in the 

average distance traveled to the given outlet type. 

Across all specifications we find that households in this sample place a positive mean utility 

on Supermarkets relative to the outside option, given the positive estimates of the constant term. 

The point estimates for Superstore are positive and significant, indicating that households prefer 

Superstores to Supermarkets. Households also prefer shopping at Superstores relative to the outside 

option, with the coefficient of the mean utility of Superstores obtained by adding the constant and the 

coefficient in the Superstore row (for example, in column 2 the mean utility of Superstores relative 

to the outside option is 3.341+1.410 = 4.751). 

Comparing the mean utility estimates across outlet type reveals the following preference ranking, 

from highest to lowest utility: (1st) Superstore, (2nd) Fast Food, (3rd) Supermarket, (4th) 

Restaurant, (5th) Other Category, (6th) Convenience, (7th) Combo Retail, (8th) Grocery Store, 
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(9th) Farmers Market. Omitting household characteristic control variables (column 3) and time 

fixed effects (column 4) does not alter the revealed preference rank- ing.19 To save space, we do not 

include the estimates for the household characteristic control variables. However, the interested 

reader can find them in a supplementary appendix on- line. The coefficient on distance is also 

consistent across all three IV specifications. For the remainder of the article we will use the full IV 

specification in column 2. 

Heterogeneity by SNAP Participation and Income 

Table 5 reports heterogeneity in the choice model mean utility estimates with respect to SNAP 

participation and income group, using the preferred specification in table 4. The columns of table 5 

are organized as follows. Column 1 provides estimates for the entire sample. Column 2 provides 

estimates for the 1,483 SNAP participating households. Column 3 reports the estimates for the 570 non-

SNAP households with income less than 100% of FPL (i.e., lowest-income non-SNAP), column 4 for 

the 783 non-SNAP households with income between 101 −185% of FPL (i.e., mid-income non-

SNAP), and finally, column 5 for the 1,825 non-SNAP households with income larger than 185% of 

FPL (i.e., non-eligible non-SNAP).  

The results presented in table 5 show that when breaking up the sample, the distance point 

estimates are negative and statistically different from zero for both SNAP and non- SNAP 

households. Breaking up the sample also yields interesting patterns for the utility estimates by outlet 

category. First, we find that Supermarkets are preferred to the out- side option across all household 

groups, given the positive and statistically significant point estimate of the constant term in each 

column. Second, Superstores are found to be the most preferred outlet across all household groups 

except non-eligible non-SNAP households, who prefer Fast Food first and Superstores second. Third, 

for SNAP and the lowest-income non-SNAP households, the utility estimates for Fast Food are not 

statistically different from those of Supermarkets, and for non-eligible non-SNAP the utility estimates 

for Restaurants are not statistically different from those of Supermarkets. Lastly, Farmers Markets 
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and Grocery Stores have the most negative and significant mean utility estimates of all outlet 

alternatives and are, therefore, revealed to be the least preferred alternatives available to the households 

in the sample, regardless of SNAP participation and income level. Given that prices are not included 

in the bundle of outlet attributes, the low preferences for Farmers Markets and Grocery Stores may 

be picking up the consistently higher prices offered at these outlets compared to their larger 

counterparts (i.e., Supermarkets and Superstores). 

Heterogeneity by Food Outlet Accessibility and Store Choice Rationale 

Table 6 reports heterogeneity in the mean utility estimates by household food desert status and 

reported car access, by household rural/urban status, and by households citing either price alone or 

closeness to home as the reason for choosing their primary store. In the columns 1–4 we divide the 

households by the food desert status of the census blockgroup in which they live and by self-reported 

vehicle access. In the FoodAPS sample, one percent of the households report no car access and live in 

a food desert, 4% report car access and live in a food desert, 3% report no car access and do not live in 

a food desert, and 93% report car access and do not live in a food desert. We posit that the households 

in column 1 have the lowest food store access while those in column 4 have the highest. 

A result which stands out is that the distance point estimate for households without car access 

and not living in a food desert (column 3) is more than double the magnitude of what we find for 

households with car access not living in a food desert (column 4). For households living in food deserts 

(columns 1 and 2), the point estimates for distance are negative, but not statistically different from zero. 

This non-significance may be due to small sample problems, given that only 5% of households live in 

food deserts. With respect to revealed preference ranking, only households with the highest food 

store access (column 4), value shopping at Fast Food significantly more than at Supermarkets. 

Interestingly, households with the least food store access (column 1), place a higher value on 

Convenience stores than households with greater access. 

Next, in the columns 5 and 6 we divide the households by whether they live in an urban or rural 
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census tract. The point estimate for distance is greater in magnitude for households living in rural areas 

than for those in urban areas, and this difference is statistically significant at the 1% significance level. 

Thus households that live remotely place higher disutility on having to travel one mile farther to get 

food than those in more populated areas. The revealed preference rankings for outlet types are similar 

for both urban and rural households. 

In the final two columns households are classified into groups depending on whether they stated 

either prices (alone) or closeness-to-home as the reason for choosing their primary food store during 

the initial interview. As discussed in the FoodAPS data section above, the bottom rows of table 3 

report the share of households choosing each of the pre-coded reasons for primary store choice, where 

respondents could select more than one response. Roughly 35% of households cite prices as being a 

reason for primary store choice, without selecting closeness-to-home, while half list closeness-to-

home, with or without selecting prices. The point estimates of mean utility for these two mutually 

exclusive groups are reported in columns 7 and 8 respectively. We find that distance has a negative 

point estimate for both household groups, and, as we would expect, the point estimate is greater in 

magnitude for the households that list closeness as their reason for store choice. Furthermore, 

households that list prices value Superstores more than Fast Food, whereas the reverse is true for 

those that state closeness-to-home. It is reassuring that our revealed preference estimates from our 

discrete choice model match the stated preferences of the households. 

In summary, our results consistently emphasize that households obtain disutility from traveling 

farther to food outlets and positive utility from acquiring food at Superstores, Fast Food and 

Supermarkets compared to the Other Category, Grocery Stores, and Farmers Markets.20 We find 

slight variations depending on which household groups we include in the sample. For mean utility 

estimates along additional dimensions of household heterogeneity, the interested reader can find result 

tables—by household composition and size, by race and ethnicity, and by gender, age, and education 
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of the PR—in the supplementary appendix online. 

Inferring willingness to pay 

 

Based on the estimates of mean utilities reported in the previous tables, we can infer the 

willingness to pay (WTP) in distance traveled to shop at each outlet category. The approach has two 

steps. First, by dividing the marginal utility parameter of outlet type, αj , by the absolute value of the 

marginal utility for distance from home, βdistance, we obtain a willingness to pay in miles to acquire food 

at outlet type j, given by: 

 

 

(5) WT P 

 
 

miles 

  αj  
= . 

|βdistance| 

 
 

This marginal utility ratio tells us the number of miles per week that would yield the same 

household utility as shopping at a particular outlet type. 

Second, to obtain the (easier to interpret) dollar equivalent, we convert miles into dollars by 

multiplying by the average amount an American spends in operating costs to drive one mile, which 

is approximately 20 cents per mile (AAA 2013).21 Other studies in the store choice literature use 

similar travel costs. For instance, using self-reported travel data, Feather (2003) reports that the 

weighted average out-of-pocket expense for getting a ride, driving one’s own car, or driving a 

borrowed car is 23 cents per mile. Yet importantly, while we believe 20 cents per mile is a reasonable 

cost estimate, we will put more weight on the relative size of the WTP estimates across outlet types, 

which is not affected by the size of the scalar used.22
 

The WTP estimates for the outlet choice model are reported in table 7, for the entire sample 

and by SNAP participation and income group. In the top panel we report the weekly 
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WTP in miles, and in the bottom panel we report the same WTP estimates converted to dollars. 

Focusing on the bottom panel, in column 1 we find that the WTP for Superstores and Fast Food are 

the two highest among the alternatives, at $17.17 and $16.36 respectively. The options that are 

revealed to be the least preferred are Farmers Markets and Grocery Stores, which have significant 

WTP estimates of -$10.52 and -$8.39. These estimates mean that, on average, a household in this 

sample would need to be compensated with 8-10 dollars a week to attend a Farmers Market or a 

smaller Grocery Store. 

SNAP households (column 2) are willing to pay more to shop at Superstores and Super- markets 

than the other household groups. Given that SNAP households can only redeem their SNAP 

benefits at FAH outlets, this is perhaps not surprising. SNAP households are also willing to pay 

$21.96 for Fast Food, which is similar in magnitude to the what the non-eligible non-SNAP 

households are willing to pay for Fast Food. This is consistent with SNAP households being infra-

marginal—where SNAP benefits expand the budget set so that households can buy more of all goods. 

The lowest-income non-SNAP households (column 3) are willing to pay less than all other 

households groups (columns 2, 4, and 5) across all outlet categories, but have the same relative 

rankings, namely they are willing to pay the most for Superstores ($10.57) and Fast Food ($8.11) and 

need to be compensated to go to Grocery Stores and Farmers Markets. The non-eligible non-SNAP 

households (column 5) are willing to pay slightly more for Fast Food ($20.34) than for Superstores 

($18.03), though the difference is not statistically significant. Non-eligible non-SNAP households 

also have the highest WTP for Restaurants ($14.90). 

While we examine the utility estimates separately for SNAP and non-SNAP households, we 

stress that these estimates are not designed to measure the causal effects of SNAP participation on 

WTP for outlet types. Take for example the results that mid-income non-SNAP households (column 



 

Food APS Research at UKCPR – Page 455  

4) are willing to pay $5 more for Restaurants than SNAP households (column 1). This relationship 

could be explained with two opposing arguments. Perhaps eligible non-SNAP households do not 

participate in SNAP because they value Restaurants, or perhaps eligible non-SNAP households 

value Restaurants more than SNAP households because they are not restricted to use SNAP benefits 

at FAH outlets. 

We can also estimate how much households are willing to pay to have each of the outlets types 1 

mile closer to their home. Figure 1 uses the WTP estimates from the bottom panel of table 7—as well 

as the average distances traveled by each of the household groups to each of the outlet categories in 

table 1—in a back-of-the-envelope calculation of the average weekly WTP for an outlet type to be 

located 1 mile closer to home. We find that households are willing to pay $2-5 per week to have a 

Superstore 1 mile closer to their home, $1-4 for a Fast Food restaurant to be 1 mile closer to home, 

and $1-6 for a Supermarket to be 1 mile closer to home. Once again, households would pay very 

little, or need to be compensated, on average for the remaining four FAH outlet categories to be 1 

mile closer to home. 

In summary, households are willing to pay the most for the two largest FAH options 

(Superstores and Supermarkets) and for Fast Food. Interestingly, even the lowest-income non-

SNAP households are willing to pay a positive and significant amount for Superstores and Fast Food. 

Thus contrary to the hypothesis that eligible non-SNAP households do not participate in SNAP 

because they do not value FAH stores, we find that having a Superstore closer to home would be 

valued by these households. Given that prices are not included in the bundle of outlet attributes, the 

revealed preferences for Superstores and Fast Food may be picking up a preference for the 

consistently lower prices offered at these outlets.
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Conclusions 

 

Using detailed household-level food acquisition data we estimate a model of store choice, not 

only as a function of household characteristics but also as a function of attributes of the households’ 

local food environment. By analyzing actual consumer decisions, we estimate directly revealed 

preferences and willingness to pay for outlet types. We find that FoodAPS households are willing to 

pay between $12 and 17 per week in distance traveled for Super- stores, Supermarkets and Fast Food, 

while they are willing to pay significantly less for the remaining outlets. To put this in perspective, 

a WTP of $15 represents 9.6% of the weekly food expenditures of the average household in the 

FoodAPS sample.23
 

The results of this research have large policy implications regarding the improvement of food 

access for low-income households and provide policymakers with important information on the 

determinants and correlates of consumer preferences towards retail food outlets. In particular, our 

results imply that low-income households would be receptive to policymakers promoting the 

building of certain types of food stores (Superstores) over other types (Convenience and smaller 

Grocery Stores). Furthermore, across heterogeneous household characteristics, the households in 

this sample have low WTP for Farmers Markets to be closer to home, and high WTP to pay for Fast 

Food to be closer to home. This implies that simply building Farmers Markets will not induce 

households to shop there. Instead, low- income household may need to be compensated to shop at 

Farmers Markets.24 Interestingly, the WTP for Fast Food is almost as high as the WTP for 

Superstores. This is true for all household types, and not just those with the lowest incomes. 

While we find broadly similar patterns of preferences across heterogeneous household groups, we 

do identify some differences. SNAP households are willing to pay more than non- SNAP households to 

have FAH outlets closer to their home. Our estimates also vary by food desert status and car access, by 

urban/rural status, and by stated price/distance sensitivity. In particular, we find that households (a) 
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without car access and not living in a food desert, (b) living in a rural area, or (c) that state closeness-

to-home as their reason for primary store choice, receive greater disutility from distance than their 

counterparts. Because of this, incentives, such as the Healthy Food Financing Initiative, potentially 

should be designed to fit the sociodemographic composition of each identified low-income, low-access 

neighborhood in question. 

We discuss four estimation concerns that could limit the validity of our results: (1) zero weight 

on free food events, (2) omitted outlet-level price data, (3) unobserved outlet attributes correlated 

with distance, and (4) location endogeneity. We address the last two issues, which are of particular 

concern, by instrumenting the chosen distance to each outlet type with the predetermined distance to 

the closest outlet of each type, and by employing the FoodAPS dataset’s rich assortment of household 

and local food environment characteristics in the model. While it is reassuring that we find our 

instrument corrects the positive bias for which we are concerned, it is important to note that bias may 

persist if the presence of outlets close to where households live impacts store choice not only through 

distance traveled. 

In future work we plan to extend the structural choice model in this article to perform 

simulations of counterfactual changes to the households’ choice set. In particular, we will estimate 

how households alter their shopping habits when faced with changes in the distance from home to each 

of the outlet types, and consequently, examine what one could expect from policies designed to 

increase the availability of food stores in underserved areas. 

In conclusion, while we present utility estimates separately for SNAP and non-SNAP 

households, we stress that these estimates are not designed to measure the causal effects of SNAP 

participation on WTP for outlet type. Moreover, while we find that all households value 

Superstores, Supermarkets and Fast Food more than other food outlets, the building of these 

preferred outlet is not a silver bullet for improved dietary outcomes. Changing consumers’ diets 
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involves both advancing the retail food environment and working with consumers. This article provides 

a necessary step in understanding where low-income households want to purchase food. The next step 

is to explore how these revealed preferences can be leveraged, when working with both retailers and 

consumers, to promote healthier eating. 

Notes 

1For a comprehensive review of the literature on food access and health outcomes, see Caswell  and  Yaktine  

(2013).  Recent studies have  found that (i) elderly  residents living in food deserts who do not own     a vehicle 

are more likely than those with a vehicle to report food insufficiency (Fitzpatrick et al. 2016), (ii) exposure to 

food deserts is correlated with higher body mass index scores among elementary schoolchildren (Thomsen et al. 

2016), and (iii) increased access to large supermarkets,  grocery stores,  and convenience  stores in metropolitan 

areas can mitigate the likelihood of adults experiencing food insecurity (Bonnano and   Li 2015). 

2Staus (2009) uses GfK ConsumerScan data while Kyureghian and Nayga (2013), Kyureghian, Nayga, 

 
and Bhattacharya (2013) and Broda, Leibtag, and Weinstein (2009) use Nielsen HomeScan data. 

 
3This article uses the FoodAPS data as of September 25, 2015. For more information about FoodAPS, please 

see the USDA, ERS Website (accessed October 12,   2015). 

4Primary Sampling Units (PSUs) are defined as counties or groups of contiguous counties. 

5For all outlet categories except Farmers  Market, distances are measured from each household’s home. For  

Farmers  Market, distances are measured from the centroid of each household’s census block group. We use the 

“straight-line distance” for all distance measures, calculated by SAS version 9.3 GeoDist function. We drop 

282 food acquisition events where the straight-line distance between the respondent’s home and the 

acquisition place exceeded 200 miles, as it seemed likely that any acquisition with a distance greater than 

200 miles occurred while respondents were traveling for work or vacation, rather than originating from the 

respondent’s home. For distance measures of the food outlets each household visited, the FoodAPS data also 

contain the “driving-distance”, calculated by Google maps. Our results in the latter sections of this article 

are robust to using the driving distance instead of the straight-line distance. 

6During the initial interview, households were asked if anyone in the household receives SNAP benefits 

 
and if so, when SNAP was last received. After the survey was completed, consenting FoodAPS households 

were matched to state agency SNAP administrative files to confirm SNAP participation. Monthly income 

http://www.ers.usda.gov/data-products/foodaps-national-household-food-acquisition-and-purchase-survey.aspx


 

Food APS Research at UKCPR – Page 459  

information for the household was reported by the PR during the final interview. 

7We use 100% and 185% of FPL as group thresholds following Ver Ploeg, Mancino, and Todd (2015). 

 
While 185% of FPL is an approximation for SNAP eligibility, ERS has also developed model-based predictions 

of SNAP eligibility for the FoodAPS households, which we plan to investigate in future work. 

8Outlets in the FoodAPS data were coded into types based on information in Store Tracking and Re- 

 
demption System (STARS), InfoUSA, Google, and keywords in the reported place names. 

 
9We also calculate the share of households that never visit a particular outlet type during the sample 

week: Superstores, Supermarkets, and Restaurants are never visited by roughly 40% of FoodAPS households, 

Combo Retail, Convenience, and the Other Category are never visited by 70%, Farmers Markets and Grocery 

Stores are never visited by 95%, and Fast Food is never visited by 30%. 

10Distance measures do not represent the actual distance traveled by households, as each food event does 

 
not necessarily originate from  home. 

 
11“Supplemental Nutrition Assistance Program: Using SNAP Benefits.” USDA Food and Nutrition Ser- 

vice.  Website (accessed October 12, 2015). 

12The retail food environment measures for FAH outlets are constructed using the nationwide STARS 

 
datasets that include all retailers authorized to receive SNAP benefits as of June 2012.   The locations of   FAFH 

outlets came from InfoUSA, which is a private company that develops databases of business addresses. The 

InfoUSA data is from January   2012. 

 
13“Creating Access to Healthy, Affordable Food: Food Deserts.” United States Department of Agriculture, 

Agricultural Marketing Service. Website (accessed October 9, 2015). 

14Food security status is based on the 10 questions used to assess household food security status in the 

 
USDA’s 30-day Adult Food Security Scale. 

 
15The “outside option” captures that fact that households may decide not to acquire food at any of the  “inside 

options”.  The Other Category is the designated outside option for our analysis because, unlike the  other eight 

outlet categories, we do not have distance measures for most of the Other Category food events,  and 

consequently, we cannot estimate the Other Category mean utility directly. 

16For household that never frequent a particular outlet category, we use the distance to the closest outlet 

 
of that category. 

 
17Week-in-year fixed effects also allows us to control for the SNAP benefits cycle—the issuance of SNAP 

http://www.fns.usda.gov/snap/using-snap-benefits
http://apps.ams.usda.gov/fooddeserts/fooddeserts.aspx
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benefits during the first week of the month. In future work we will examine how outlet choices change for SNAP 

households over the course of the month. 

18Household control variables include state of residence, household size, race, presence of children under 

 
18, presence of elderly over 65, income group and SNAP participation, car access, food desert status, living 

in a rural census tract, number of outlets in a one-mile radius, population density, and the age, gender 

and education of the PR. 

19With the inclusion of household characteristic control variables, the constant term corresponds to  the 

 
utility placed on Supermarket consumption relative to the outside option for the omitted reference group of 

households. 

20As mentioned above, a concern with using expenditure shares as the empirical analogue of choice prob- 

 
abilities is that by placing zero weight on the free-food events in the Other Category, our model may 

underestimate the mean utility of the Other Category relative to the remaining eight outlet categories. To explore 

the extent to which this is an issue, we estimate the model using an alternative measure of choice probabilities: 

the share of trips made to each outlet type. Importantly, trip shares weight all food events  equally, regardless of 

expenditures (i.e., free food events are given equal weight as paid food events).  Supplementary appendix 

table 5 replicates table 5 using trip shares, rather than expenditure shares, to create the dependent variable. 

Reassuringly, we find broadly similar patterns in the preference rankings for outlet types in both tables. For 

both trip shares and expenditure shares, the FoodAPS households are revealed to prefer Supermarkets, 

Superstores, and Fast Food above Restaurant, Combo Retail and Convenience outlets and they prefer 

Grocery Stores and Farmers Markets the least. The main difference in using trip shares is that the Other 

Category moves up one spot in the preference ranking, now preferred to Supermarkets. 

21The operating cost includes gas, maintenance and tires. It does not include the ownership costs of 

 
insurance, license, registration, taxes, and depreciation. 

 
22If one used a lower (higher) travel cost estimate, than the WTP estimates would be scaled down (up). 

23The average household in the FoodAPS sample spends $157 per week on food. 

24Programs that compensate SNAP households to shop at Farmers Markets and buy fruits and vegetables 

already exist and are growing in size and number, such as Michigan’s “Double Up Food Bucks”. For more 

information on “Double Up Food Bucks,” see Website (accessed October 12,    2015). 

 

 

http://www.doubleupfoodbucks.org/
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Table 1: Summary Statistics: Weekly Food Store Choices 

non-SNAP 

income ≤ income 101 - income > 

Variable Overall 

(1) 

SNAP 

(2) 

100% FPL 

(3) 

185% FPL 

(4) 

185% FPL 

(5) 

 

Expenditure ($) 

Superstore 

 

56.78, (3.61) 

 

53.33, (4.12) 

 

44.51, (4.86) 

 

41.52, (2.45) 

 

62.30, (4.55) 

 

Supermarket 39.58, (3.69) 38.61, (4.39) 33.30, (4.94) 24.63, (2.98) 43.51, (4.63)  

Grocery Store 2.42, (0.32) 3.77, (0.75) 1.73, (0.42) 2.43, (0.47) 2.27, (0.39)  

Combo Retail 5.56, (0.91) 9.37, (1.46) 4.95, (1.02) 4.01, (0.58) 5.17, (1.20)  

Convenience 4.44, (0.46) 4.93, (0.74) 2.72, (0.67) 2.44, (0.33) 5.00, (0.68)  

Farmers Market 0.79, (0.22) 0.13, (0.05) 0.16, (0.06) 0.52, (0.26) 1.09, (0.33)  

Restaurant 26.73, (1.86) 12.06, (1.46) 19.87, (4.76) 13.13, (1.60) 33.28, (2.44)  

Fast Food 20.10, (0.88) 15.93, (1.14) 16.49, (2.44) 14.43, (1.36) 22.57, (1.16)  

Other Category 8.73, (0.78) 4.63, (0.48) 7.62, (2.17) 5.30, (1.06) 10.35, (0.99)  

Number of Trips 

Superstore 

 

1.24, (0.07) 

 

1.38, (0.10) 

 

1.12, (0.10) 

 

1.14, (0.09) 

 

1.26, (0.08) 

 

Supermarket 1.08, (0.10) 1.08, (0.09) 1.03, (0.11) 0.89, (0.09) 1.13, (0.11)  

Grocery Store 0.13, (0.01) 0.23, (0.04) 0.12, (0.02) 0.18, (0.04) 0.10, (0.01)  

Combo Retail 0.36, (0.03) 0.61, (0.06) 0.35, (0.05) 0.41, (0.05) 0.30, (0.04)  

Convenience 0.59, (0.04) 0.76, (0.07) 0.34, (0.07) 0.43, (0.06) 0.62, (0.06)  

Farmers Market 0.05, (0.01) 0.02, (0.01) 0.02, (0.01) 0.05, (0.03) 0.06, (0.01)  

Restaurant 1.37, (0.06) 0.77, (0.06) 0.97, (0.14) 0.89, (0.09) 1.65, (0.07)  

Fast Food 2.32, (0.10) 2.00, (0.12) 1.77, (0.22) 1.85, (0.15) 2.57, (0.12)  

Other Category 3.22, (0.14) 3.57, (0.21) 2.47, (0.24) 2.78, (0.20) 3.36, (0.18)  

Ave. Distance Traveled (mi.)  

Super Store 6.89, (1.00) 5.58, (0.87) 5.19, (0.71) 5.78, (0.91) 7.61, (1.22)  

Supermarket 4.73, (0.53) 3.81, (0.55) 4.27, (0.89) 4.13, (0.64) 5.07, (0.68)  

Grocery Store 5.10, (0.85) 3.68, (0.95) 7.32, (3.26) 3.06, (0.65) 5.59, (1.07)  

Combo Retail 5.24, (0.74) 3.17, (0.50) 3.43, (0.74) 4.89, (1.24) 6.35, (1.16)  

Convenience 9.56, (1.01) 6.20, (1.09) 10.01, (2.70) 5.98, (0.93) 10.71, (1.33)  

Farmers Market 5.15, (1.84) 8.72, (1.90) 37.68, (32.65) 5.34, (1.90) 3.95, (1.10)  

Restaurant 12.73, (1.25) 7.72, (1.04) 10.10, (1.27) 10.67, (2.17) 13.77, (1.51)  

Fast Food 10.13, (0.96) 5.22, (0.53) 7.91, (1.34) 7.08, (0.92) 11.72, (1.27)  

N Households 4661 1483 570 783 1825  

  Share of Households — 0.32 0.12 0.17 0.39  

Note: Weighted means reported. Standard errors in parentheses. Bold text in columns 3-5 indicate the estimate is statistically 

different from the reference group—SNAP households (column 2)—with a p-value ≤ 0.05. 
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Table 2: Summary Statistics: Retail Food Environment 
 

non-SNAP 

income ≤ income 101 - income > 

Variable Overall 

(1) 

SNAP 

(2) 

100% FPL 

(3) 

185% FPL 

(4) 

185% FPL 

(5) 

Num. of stores in 1 mile radius 

Superstore 

 

0.68, (0.09) 
 

0.84, (0.12) 
 

1.00, (0.22) 
 

0.79, (0.13) 
 

0.58, (0.07) 

Supermarket 0.80, (0.12) 1.06, (0.14) 1.13, (0.22) 0.82, (0.13) 0.69, (0.11) 

Grocery Store 1.07, (0.32) 1.50, (0.39) 2.20, (0.80) 1.61, (0.59) 0.70, (0.20) 

Combo Retail 1.93, (0.23) 2.56, (0.27) 2.29, (0.35) 2.19, (0.36) 1.70, (0.21) 

Convenience 3.85, (0.66) 5.93, (0.84) 6.42, (1.72) 5.11, (1.15) 2.77, (0.43) 

Farmers Market 0.25, (0.04) 0.27, (0.06) 0.37, (0.10) 0.20, (0.05) 0.23, (0.05) 

Restaurant 25.39, (4.45) 28.63, (5.09) 37.98, (9.81) 27.41, (6.53) 22.20, (3.88) 

Fast Food 5.27, (0.62) 6.25, (0.62) 6.41, (1.00) 5.50, (0.80) 4.84, (0.63) 

Distance to closest store (mi.)      

Superstore 3.23, (0.53) 3.28, (0.65) 2.55, (0.35) 3.39, (0.76) 3.30, (0.54) 

Supermarket 3.10, (0.71) 2.69, (0.72) 2.51, (0.54) 3.54, (1.13) 3.21, (0.72) 

Grocery Store 4.61, (0.57) 3.97, (0.71) 4.35, (0.59) 4.43, (0.65) 4.81, (0.59) 

Combo Retail 1.87, (0.37) 1.43, (0.26) 1.44, (0.22) 2.02, (0.55) 2.01, (0.41) 

Convenience 1.66, (0.24) 1.16, (0.18) 1.32, (0.19) 1.53, (0.33) 1.85, (0.28) 

Farmers Market 12.25, (1.35) 13.24, (2.09) 10.70, (1.55) 14.47, (2.14) 11.93, (1.20) 

Restaurant 0.98, (0.14) 0.85, (0.17) 0.74, (0.11) 1.07, (0.18) 1.04, (0.15) 

Fast Food 2.28, (0.49) 2.35, (0.60) 1.55, (0.29) 2.51, (0.75) 2.35, (0.49) 

Population density (person/sq mile) 5013, (862) 6580, (1173) 8577, (2018) 6027, (1561) 3903, (602) 

Rural (share) 0.33, (0.05) 0.26, (0.05) 0.26, (0.05) 0.35, (0.07) 0.36, (0.05) 

Food Desert (share) 0.05, (0.01) 0.09, (0.02) 0.05, (0.01) 0.08, (0.03) 0.03, (0.01) 

No car access (share) 0.05, (0.01) 0.15, (0.02) 0.12, (0.03) 0.07, (0.01) 0.02, (0.00) 

N Households 4661 1483 570 783 1825 

Share of Households — 0.32 0.12 0.17 0.39 

Note: Weighted means reported. Standard errors in parentheses. Bold text in columns 3-5 indicate the estimate is statistically 

different from the reference group—SNAP households (column 2)—with a p-value ≤ 0.05. 
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Table 3:  Summary Statistics:  Household and Primary Respondent Characteristics 
non-SNAP 

income ≤ income 101 - income > 

Variable Overall 

(1) 

SNAP 

(2) 

100% FPL 

(3) 

185% FPL 

(4) 

185% FPL 

(5) 

Household (HH) Characteristics 

HH size (mean) 

 

2.44, (0.05) 

 

3.11, (0.10) 

 

2.20, (0.12) 

 

2.24, (0.11) 

 

2.38, (0.05) 

White (share) 0.80, (0.02) 0.63, (0.05) 0.73, (0.04) 0.77, (0.04) 0.86, (0.02) 

Black (share) 0.13, (0.02) 0.28, (0.05) 0.16, (0.03) 0.18, (0.04) 0.09, (0.02) 

Asian (share) 0.02, (0.01) 0.01, (0.00) 0.03, (0.01) 0.02, (0.01) 0.03, (0.01) 

Hispanic (share) 0.13, (0.02) 0.25, (0.04) 0.19, (0.04) 0.16, (0.03) 0.09, (0.02) 

Non-U.S. citizen (share) 0.04, (0.01) 0.04, (0.01) 0.08, (0.02) 0.06, (0.02) 0.03, (0.01) 

Children age < 18 (share) 0.33, (0.01) 0.51, (0.02) 0.30, (0.03) 0.26, (0.02) 0.31, (0.02) 

Elderly age > 65 (share) 0.25, (0.01) 0.17, (0.02) 0.29, (0.03) 0.35, (0.03) 0.25, (0.02) 

Food Secure (share) 0.85, (0.01) 0.57, (0.02) 0.72, (0.03) 0.75, (0.02) 0.94, (0.01) 

WIC HH (share) 0.04, (0.00) 0.14, (0.01) 0.04, (0.01) 0.06, (0.01) 0.02, (0.00) 

Primary Respondent (PR)  Characteristics 

Age (mean) 49.74, (0.62) 44.47, (0.94) 51.22, (1.27) 52.54, (1.35) 50.05, (0.70) 

Female (share) 0.67, (0.01) 0.73, (0.02) 0.72, (0.03) 0.66, (0.04) 0.66, (0.02) 

Less than high school (share) 0.10, (0.01) 0.25, (0.02) 0.20, (0.03) 0.13, (0.02) 0.04, (0.01) 

High school or GED (share) 0.25, (0.02) 0.36, (0.03) 0.20, (0.02) 0.33, (0.03) 0.23, (0.02) 

Some college education (share) 0.33, (0.01) 0.31, (0.02) 0.32, (0.04) 0.33, (0.03) 0.34, (0.02) 

Bachelor’s Degree or more (share) 0.32, (0.02) 0.08, (0.01) 0.28, (0.05) 0.20, (0.03) 0.39, (0.02) 

Reason for shopping at primary store (share) 

Prices/Value 0.53, (0.02) 0.61, (0.02) 0.50, (0.03) 0.52, (0.03) 0.51, (0.03) 

Good Produce 0.17, (0.01) 0.12, (0.02) 0.14, (0.02) 0.14, (0.03) 0.19, (0.02) 

Good Meat 0.12, (0.01) 0.13, (0.02) 0.12, (0.02) 0.15, (0.02) 0.12, (0.01) 

Variety 0.24, (0.02) 0.19, (0.02) 0.21, (0.03) 0.23, (0.04) 0.26, (0.02) 

Specialty Foods 0.07, (0.01) 0.06, (0.01) 0.09, (0.02) 0.07, (0.02) 0.07, (0.01) 

Close to home 0.53, (0.02) 0.47, (0.03) 0.50, (0.04) 0.46, (0.04) 0.56, (0.02) 

Loyalty program 0.11, (0.02) 0.09, (0.02) 0.09, (0.02) 0.08, (0.02) 0.12, (0.02) 

N Households 4661 1483 570 783 1825 

Share of Households — 0.32 0.12 0.17 0.39 

Note: Weighted  means reported.  Standard errors in parentheses.  Bold text in columns 3-5 indicate the estimate is statistically different  

from the reference group—SNAP households (column 2)—with a p-value ≤   0.05. 
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Table 4: Mean Utility Estimates for the Outlet Choice Model 

 

 OLS IV IV IV 
(1) (2) (3) (4) 

D. Log Expend. Share     

Distance 0.0768*** -0.0556*** -0.0585*** -0.0590*** 

 (0.0042) (0.0071) (0.0065) (0.0065) 

Superstore 1.326*** 1.410*** 1.415*** 1.416*** 

 (0.172) (0.173) (0.176) (0.176) 

Grocery Store -5.724*** -5.663*** -5.654*** -5.651*** 

 (0.153) (0.153) (0.158) (0.158) 

Combo Retail -3.839*** -4.057*** -4.051*** -4.053*** 

 (0.161) (0.163) (0.168) (0.168) 

Convenience -3.859*** -3.984*** -3.959*** -3.959*** 

 (0.160) (0.162) (0.166) (0.167) 

Farmers Market -7.288*** -6.252*** -6.223*** -6.220*** 

 (0.150) (0.156) (0.159) (0.160) 

Restaurant -1.758*** -1.554*** -1.387*** -1.389*** 

 (0.174) (0.179) (0.173) (0.173) 

Fast Food 0.899*** 1.186*** 1.211*** 1.209*** 

 (0.166) (0.168) (0.171) (0.172) 

Constant 2.906*** 3.341*** 2.245*** 3.070*** 

 (0.276) (0.280) (0.210) (0.130) 

Week Fixed Effects YES YES YES NO 

HH Characteristicsa
 YES YES NO NO 

N 36226 36226 36226 36226 

R-sq 0.179 — — — 

1st-stage R-sq — 0.342 0.334 0.334 

1st-stage F-Test — 25837 32984 33470 

1st-stage IV Coef — 0.978*** 1.012*** 1.013*** 

Note: Robust standard errors in parentheses. The dependent variable is the Log Expenditure 

Share of one of eight Food Outlets minus the Log Expenditure Share of the Outside Option. 

The constant term refers to the omitted outlet category: Supermarket. In the IV columns, 

distance traveled is instrumented with the distance to closest outlet of the given outlet type. 

+ p < 0.10 * p <0.05 ** p <0.01 *** p<0.001. 
aHousehold control variables include state of residence, household size, race, presence of 

children under 18, presence of elderly over 65, income group and SNAP participation, car 

access, food desert status, living in a rural census tract, number of outlets in one mile radius, 

population density, and the age, gender and education of the primary respondent. 
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Table 5: Mean Utility Estimates, by SNAP Participation & Income Group 
 

non-SNAP 

income ≤ income 101 - income > 

 Overall 

(1) 

SNAP 

(2) 

100% FPL 

(3) 

185% FPL 

(4) 

185% FPL 

(5) 

D. Log Expend. Share      

Distance -0.0556*** -0.0429*** -0.0575** -0.0478** -0.0633*** 

 (0.0071) (0.0107) (0.0201) (0.0147) (0.0136) 

Superstore 1.410*** 1.250*** 1.339** 1.845*** 1.378*** 

 (0.173) (0.295) (0.482) (0.411) (0.278) 

Grocery Store -5.663*** -5.684*** -5.417*** -5.134*** -5.953*** 

 (0.153) (0.266) (0.420) (0.357) (0.246) 

Combo Retail -4.057*** -3.617*** -3.876*** -3.632*** -4.639*** 

 (0.163) (0.284) (0.448) (0.388) (0.258) 

Convenience -3.984*** -3.635*** -4.498*** -3.886*** -4.140*** 

 (0.162) (0.284) (0.441) (0.373) (0.261) 

Farmers Market -6.252*** -6.550*** -6.031*** -5.912*** -6.291*** 

 (0.156) (0.264) (0.429) (0.365) (0.254) 

Restaurant -1.554*** -3.682*** -2.005*** -1.684*** 0.392 

 (0.179) (0.298) (0.493) (0.428) (0.293) 

Fast Food 1.186*** 0.139 0.634 1.413*** 2.106*** 

 (0.168) (0.291) (0.477) (0.394) (0.270) 

Constant 3.341*** 4.551*** 1.686* 4.018*** 4.303*** 

 (0.280) (0.525) (0.796) (0.693) (0.427) 

Week Fixed Effects YES YES YES YES YES 

HH Characteristicsa
 YES YES YES YES YES 

N 36226 11482 4424 6115 14205 

Note: Robust standard errors in parentheses. The dependent variable is the Log Expenditure Share of one of eight 

Food Outlets minus the Log Expenditure Share of the Outside Option. The constant term refers to the omitted outlet 

category: Supermarket. In all columns, distance traveled is instrumented with the distance to closest outlet of the 

given outlet type. Each column uses the same model specification, but on a different samples of FoodAPS households. 

Column (1) includes the entire sample. Column (2) includes only SNAP participating households. Columns (3)-(5) 

include non-SNAP participating households within three separate income groups: incomes below or equal to 100% 

of the Federal Poverty Line (FPL), between 101 and 185% FPL, and above 185% FPL. + p < 0.10 * p <0.05 **  p 

<0.01 *** p<0.001. 
aHousehold control variables include state of residence, household size, race, presence of children under 18, presence 

of elderly over 65, income group and SNAP participation, car access, food desert status, living in a rural census tract, 

number of outlets in one-mile radius, population density, and the age, gender and education of the primary 

respondent. 
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Table 6: Mean Utility Estimates, by Car Access & Food Desert Status, Urban & Rural Status, and Rationale for Primary Store 

Choice 
 

 No Car, 

Food 

Desert 

Car, 

Food 

Desert 

No Car, 

Not Food 

Desert 

Car, 

Not Food 

Desert 

 

 
Urban 

 

 
Rural 

 

Shop for 

Prices 

 

Shop for 

closeness 

(1) (2) (3) (4) (5) (6) (7) (8) 

D. Log Expend. Share         

Distance -0.0501 -0.0223 -0.1410* -0.0602*** -0.0304*** -0.0966*** -0.0314** -0.0825*** 

 (0.0394) (0.0157) (0.0578) (0.0079) (0.0081) (0.0129) (0.0116) (0.0113) 

Superstore 4.085+ 0.708 1.491+ 1.458*** 1.329*** 1.630*** 1.974*** 0.893*** 

 (2.385) (0.588) (0.765) (0.184) (0.201) (0.333) (0.289) (0.245) 

Grocery Store -3.554+ -6.041*** -2.990*** -5.767*** -5.799*** -5.319*** -5.448*** -5.819*** 

 (2.151) (0.524) (0.662) (0.163) (0.179) (0.291) (0.261) (0.214) 

Combo Retail -3.752+ -3.757*** -2.383*** -4.170*** -4.241*** -3.650*** -3.981*** -4.137*** 

 (1.981) (0.564) (0.724) (0.173) (0.188) (0.318) (0.273) (0.230) 

Convenience 0.430 -3.307*** -2.652*** -4.121*** -4.159*** -3.660*** -3.615*** -4.193*** 

 (2.472) (0.563) (0.728) (0.172) (0.189) (0.314) (0.273) (0.228) 

Farmers Market -5.020** -6.595*** -4.479*** -6.294*** -6.532*** -5.718*** -6.341*** -6.164*** 

 (1.879) (0.541) (0.663) (0.166) (0.184) (0.290) (0.264) (0.220) 

Restaurant -4.068+ -2.511*** -2.827*** -1.432*** -1.569*** -1.815*** -1.849*** -1.248*** 

 (2.300) (0.657) (0.827) (0.190) (0.211) (0.346) (0.307) (0.255) 

Fast Food -1.353 0.686 0.398 1.268*** 1.223*** 0.933** 1.196*** 1.266*** 

 (2.369) (0.588) (0.740) (0.179) (0.196) (0.326) (0.285) (0.237) 

Constant 3.570+ 6.760*** 0.852 3.463*** 3.076*** 8.471*** 2.635*** 4.058*** 

 (1.960) (1.271) (1.714) (0.297) (0.319) (1.561) (0.450) (0.414) 

Week Fixed Effects YES YES YES YES YES YES YES YES 

HH Characteristicsa
 YES YES YES YES YES YES YES YES 

N 95 2509 1536 32086 26395 9831 12712 18056 

Note: Robust standard errors in parentheses. The dependent variable is the Log Expenditure Share of one of eight Food Outlets minus the Log 

Expenditure Share of the Outside Option. The constant term refers to the omitted outlet category: Supermarket. In all columns, distance traveled is 

instrumented with the distance to closest outlet of the given outlet type. Each column uses the same model specification, but on a different samples of 

FoodAPS households. Columns (1) to (4) divide households by whether they state having car access and by whether they live in a food desert designated 

census block group. Columns (5) and (6) divide households by whether they live in a urban or rural census tract. Column (7) divide households by 

whether they state prices or closeness-to-home (and not prices) as their reason for shopping at their primary food store.     + p < 0.10 * p <0.05 ** p 

<0.01 *** p<0.001. 
aHousehold control variables include state of residence, household size, race, presence of children under 18, presence of elderly over 65, income group 

and SNAP participation, car access, food desert status, living in a rural census tract, number of outlets in one mile radius, population density, and the 

age, gender and education of the primary respondent. 
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Table 7: Willingness to Pay in Distance Traveled, by SNAP Participation & Income Group 
 

non-SNAP 

income ≤ income 101 - income > 

 Overall 

(1) 

SNAP 

(2) 

100% FPL 

(3) 

185% FPL 

(4) 

185% FPL 

(5) 

WTP (miles)      

Superstore 85.450*** 

(12.401) 

135.221*** 

(36.531) 

52.609* 

(24.432) 

122.657** 

(41.316) 

89.747*** 

(21.002) 

Supermarket 60.090*** 106.084*** 29.322 84.059+ 67.978*** 

 (12.567) (31.252) (25.068) (47.247) (16.193) 

Grocery Store -41.763*** -26.410+ -64.887* -23.347 -26.066** 

 (7.829) (15.029) (27.272) (17.704) (9.522) 

Combo Retail -12.878 21.772 -38.087 8.075 -5.308 

 (8.063) (15.579) (28.183) (18.325) (9.868) 

Convenience -11.565+ 21.352 -48.904* 2.762 2.575 

 

Farmers Market 

(6.045) 

-52.356*** 

(5.693) 

(14.856) 

-46.597** 

(15.391) 

(20.903) 

-75.565*** 

(21.371) 

(16.566) 

-39.623* 

(16.540) 

(8.004) 

-31.406*** 

(7.966) 

Restaurant 32.140*** 20.256 -5.548 48.828* 74.171*** 

 

Fast Food 

(8.770) 

81.421*** 

(7.305) 

(18.389) 

109.324*** 

(14.950) 

(30.735) 

40.348* 

(16.151) 

(21.031) 

113.619*** 

(22.631) 

(10.074) 

101.248*** 

(18.535) 

WTP ($)      

Superstore 17.167**

* 

(2.491) 

27.166*** 

(7.339) 

10.569* 

(4.908) 

24.642** 

(8.300) 

18.030*** 

(4.219) 

Supermarket 12.072*** 21.312*** 5.891 16.887+ 13.657*** 

 (2.525) (6.278) (5.036) (9.492) (3.253) 

Grocery Store -8.390*** -5.306+ -13.036* -4.690 -5.237** 

 (1.573) (3.019) (5.479) (3.557) (1.913) 

Combo Retail -2.587 4.374 -7.652 1.622 -1.066 

 (1.620) (3.130) (5.662) (3.681) (1.983) 

Convenience -2.323+ 4.290 -9.825* 0.555 0.517 

 

Farmers Market 

(1.215) 

-10.518*** 

(1.144) 

(2.985) 

-9.361*** 

(3.092) 

(4.199) 

-15.181*** 

(4.293) 

(3.328) 

-7.960* 

(3.323) 

(1.608) 

-6.309*** 

(1.600) 

Restaurant 6.457*** 4.070 -1.115 9.810* 14.901*** 

 

Fast Food 

(1.762) 

16.357*** 

(1.468) 

(3.694) 

21.963*** 

(3.003) 

(6.175) 

8.106* 

(3.245) 

(4.225) 

22.826*** 

(4.547) 

(2.024) 

20.341*** 

(3.724) 

Note: Robust standard errors in parentheses. + p < 0.10 * p <0.05 ** p <0.01 *** p<0.001. We obtain 

average and heterogeneous willingness to pay estimates in terms of miles traveled:  W T Pmiles =  
  αj  . 

|βdistance| 

To convert those into dollars, we use the fact that Americans spend on average 20 cents per mile in car 

operating cost (AAA  2013). 
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Figure 1: Weekly willingness to pay for an outlet type to be located one mile closer to home 

Note:  This figure uses the WTP estimates from the bottom panel of table 7, as well as the average distances traveled by each of 

the household groups to each of the outlet categories from table 1, in order to calculate the average weekly WTP for an outlet 

type to be one mile closer to home.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  




