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Changes in the Distribution of Income among Single Mother Families:
Murphy Brown meets Inequality

Abstract: We document the demographic and economic forces underlying changes in income
inequality among single mother families over the past three decades in the United States. Using
decomposable measures of after-tax income-to-needs inequality, we examine within- and
between-group inequality based on education attainment, age, past marital status, race, and
employment status. We also conduct income factor decompositions to quantify the relative
contributions of earnings, transfers, other income, and taxes to inequality. Our results from the
March Current Population Survey show that income-to-needs inequality rose nearly 30 percent
between 1979 and 2005. The demographic decompositions indicate that most of the change in
inequality is occurring within groups, in part because of large, offsetting between-group changes
in population shares and relative mean incomes. The most prominent economic factor
underlying the rise in income inequality among single mother families is labor-market earnings,
the latter of which was induced by rising variance of hourly wages.



Single mothers have been the subject of extensive social science research, beginning at
least with the Moynihan Report in 1965, and more recently in the wake of major tax and welfare
reforms that expanded the generosity of the Earned Income Tax Credit and created the new
block-grant welfare program Temporary Assistance to Needy Families (Moffitt 2003; Ziliak (In
press)).! The Moynihan Report expressed alarm over the growth of out-of-wedlock childbirth
among young, low-educated African Americans, but in what turned out to be a prescient moment
from popular culture, the composition of single mothers has changed dramatically in the ensuing
decades. During the 1991-1992 television season the fictional character Murphy Brown, who
was a highly educated and successful television journalist, chose to bear a child outside of
marriage in what was characterized “as just another lifestyle choice.” As shown in Table 1,
between 1979 and 2005 the fraction of single mothers with at least 16 years of school doubled
from 7 percent to 14 percent (and more than doubled for those with some college), the fraction
never married rose from 18 percent to 43 percent, and the fraction over age 40 rose by one-third
to 33 percent.? Thus, who becomes a single mother today compared to three decades ago is
fundamentally different, and as highlighted by Grogger (2003) and Bollinger, et al. (In press),
this changing demographic makeup has been associated with equally dramatic changes in the
level and composition of income among single mothers. With few exceptions, however, there has
been little research on the implications of these changes for the distribution of income among
this population (Mills, et al. 2001; Schoeni and Blank 2000; Meyer and Sullivan 2006).

Documenting the sources of widening inequality in the United States continues to be a

focal research priority. This vast literature has linked the growth in inequality to expanding

! The future Senator Daniel Patrick Moynihan was the lead author of a report entitled “The Negro Family: The Case
for National Action,” Office of Planning and Research, United States Department of Labor (March 1965), which
later became known as the Moynihan Report. http://www.dol.gov/oasam/programs/history/webid-meynihan.htm

2 Authors calculations based on selected years of the March Current Population Survey. Details on sample selection
are given below in the Data Section.
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college-high school premiums (Bound and Johnson 1992; Katz and Murphy 1992), rising returns
to unobserved skills (Juhn, Murphy, and Pierce 1993), falling rates of unionization and the real
value of the minimum wage (DiNardo, Fortin, and Lemieux 1996; Lee 1999), social norms
(Piketty and Saez 2003), and the composition of the workforce (Lemieux 2006, 2008), among
others. Much of the literature, and the complementary work on volatility (Gottschalk and Moffitt
1994; Dynarski and Gruber 1997; Haider 2001; Blundell, Pistaferri, and Preston 2006), has
focused on men, and when women are considered, inequality among key subpopulations, notably
single mothers, is not isolated.* This omission is somewhat surprising given that perhaps no
other demographic group has been singled out more often by policy over the past three decades
than single mothers with dependent children, including the welfare reforms of the 1980s and
1990s, along with the concomitant expansions of the Earned Income Tax Credit, Medicaid, and
Supplemental Security Income (Moffitt 2003). Moreover, Lemieux (2006) recently showed that
a substantial fraction of the increase in residual wage inequality can be attributed to changes in
the composition of the workforce toward higher-educated and more-experienced workers.
Comparing Table 1 here to Lemieux’s (2006) Appendix Table 1 shows that the rate of growth in
education attainment is faster among single mothers (both working and non-working) than
among working women or men in general, suggesting that the demographic shift among single
mothers may figure even more prominently in changes in inequality among this population.

In this paper we present new evidence on the demographic and economic forces
underlying changes in income inequality among single mother families in the United States.
Using data from the 1980-2006 waves of the March Current Population Survey, our focal

measure of inequality is the squared coefficient of variation in disposable income-to-needs,

® Keys (2007) is among the first to examine women in the volatility literature. See Schmidt (2007) for a recent study
on nonmarital childbearing among single women.



which is a member of the generalized entropy class of inequality measures and has several
desirable properties that foster inequality decompositions (Shorrocks 1980, 1982; Mookherjee
and Shorrocks 1982; Jenkins 1995). Our results show that there has been a secular increase in
inequality of nearly 30 percent among all single mothers over the past few decades. Although
the rise in inequality affected all major subgroups of single mothers, we show that it is has been
concentrated in the upper tail of the income distribution since the early 1990s, which
corroborates other recent work on inequality (Piketty and Saez 2003; Autor, et al. 2005).

We then examine the demographic and economic factors underlying the increase in
inequality. To estimate whether the major between-group changes in education, age, and marital
status translated into changes in inequality, or whether inequality of single mothers is largely
determined within groups, we consider sub-group inequality decompositions based on education
attainment, age, marital status, race, and employment status. The squared coefficient of variation
is advantageous in this case because it is additively decomposable both at a point in time and
over time into within-group and between-group inequality. This adding-up property is not
guaranteed with more typical measures of inequality such as the Gini coefficient, the variance of
log income, or 90-10 ratios, nor is adding up guaranteed with commonly employed “shift-share”
decompositions. Likewise, given the documented changes in the income composition of single
mother families away from transfers and toward labor-market earnings (Grogger (2003);
Bollinger, et al. (In press)), we conduct economic factor decompositions to examine the relative
roles of earnings, transfers, other income, and taxes on income inequality. Again, the squared
coefficient of variation is advantageous because it is defined even if some income factors are

zero, such as earnings for non-workers or transfers for non-welfare recipients.



The results of our demographic decompositions indicate that the more than doubling of
higher educated single mothers in recent decades—the so-called Murphy Brown effect—led to a
large, disequalizing increase in inequality, but this increase was offset by an equally large
decrease in relative mean incomes because a higher educated mother in 2005 does not place as
high in the 2005 income distribution as a similarly educated mother did in 1979. Thus, most of
the rise in inequality was due to increases within groups. At the same time, the income factor
decompositions indicate that nearly all of the increase in income inequality among single
mothers is attributable to rising earnings inequality, though the rise was tempered by the
progressive income tax system including the EITC. We conclude our analysis by exploring the
sources underlying the increase in earnings inequality, particularly whether the 80 percent rise in
earnings variance in this period is attributable to increases in the variance of hours or hourly
wages. We find that the rise in earnings variance is due to the rising conditional earnings
variance of workers, especially the variance of hourly wages.
1. Decomposing Income Inequality

Our focal measure of inequality is a member of the generalized entropy class of

inequality indices, which is given as

Q) e=——r ?zl{(ﬁ)’c—1},x¢o,1

K(k—1)n y
where y; is disposable income for family i, ¥ is average disposable income, and k reflects an
‘aversion to inequality” with lower values implying greater aversion to inequality (Shorrocks
1980; Cowell 2000). Although a wide variety of inequality measures are available, the
generalized entropy class has several desirable properties including that it satisfies the Pigou-
Dalton principle of transfers so that it records a rank-preserving increase in inequality with

transfers from a poor person to a less poor person, it is scale invariant which is useful for making



inequality comparisons across groups and time, it has useful stochastic dominance properties for
ranking income distributions (Fomby, et al. 1999), and perhaps most important for our purpose
here, the generalized entropy class provides consistent and additively decomposable measures of
inequality. These exact decompositions can be made by subpopulations such as employment
status, education, age, and race to make inequality comparisons within and between groups
(Mookherjee and Shorrocks 1982), and by income factors such as earnings and transfers both at a
point in time and over time (Shorrocks 1982). More common measures such as the Gini
coefficient, the Atkinson index, the variance of log income, or percentile ratios such as 90-10 are
not additively decomposable and thus do not provide consistent decompositions across groups.
For example, Cowell (1988) notes that it is possible with the log variance to have a change in the
income distribution that leaves between group inequality constant, raises inequality within each
group, and yet results in lower total inequality, which is clearly an undesirable property.

For our analyses we set k = 2, which yields I, = 0.5 * CV? or one-half of the squared
coefficient of variation (one-half of the ratio of the variance to the squared mean). Aside from
the decomposability properties mentioned above a key advantage of I, is that this summary
measure is still defined even when some of the income components used in factor-share
decompositions are zero. This is important in our sample because many single mothers do not
work, do not receive transfers, or do not have other forms of non-transfer, nonlabor income.

To control for changes in average family size, we deflate after-tax income by the family-
size specific poverty threshold, yielding a measure of disposable income to needs inequality
(Gottschalk and Danziger 2005). In addition, we net out life-cycle age effects by using the
residual from an OLS regression of disposable income to needs on a quartic in age. For person i,

i=1,...,N, attime period t,t=1,..., T, we estimate
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where &;, is a mean zero random error. Because the mean of the fitted OLS residual, &;;, used in
the denominator of equation (1) is zero, the residual-based version of I, is undefined. Thus, in
order to ameliorate this shortcoming, we add to each residual the year-specific mean of the
predicted dependent variable, &;, + 9, which results in a non-zero mean but has no impact on
the year-specific estimated variance.

A. Demographic Decompositions

The generalized entropy measure of inequality is particularly useful for our purposes here
because it is additively decomposable into within-group and between-group contributions to

inequality, and only depends on a few, easily obtained terms (Mookherjee and Shorrocks 1982):

1
B) L =X wrkilyg + 5 k=1 kg — 1]
where the first term is within-group inequality and the second term is between-group inequality,
and the three determinants are the group-specific population share w, (k = 1,..., K), the square of

—— 2
the relative mean income of group k to the overall mean, uZ = (%) , and the group-specific

inequality I, ;. We consider sub-group inequality decompositions based on education
attainment, age, marital status, race, and employment status

The decomposition in equation (3) provides a snapshot at a point in time of the
demographics determining inequality, but it does not address directly the underlying sources of
change in inequality over time. A long standing approach in the inequality literature to examine
changes in inequality is to adopt the so-called shift-share method that takes a given factor, say
education, and asks questions such as ‘what would inequality be in 2000 if education attainment
remained fixed at levels in 1980?’, or ‘what is the predicted inequality in 1980 if education

attainment was at its 2000 level?’ (DiNardo, et al. 1996; Mills, et al. 2001; Autor, et al. 2005;



Lemieux 2006). This approach is attractive because it offers transparent counter-factual
decompositions of income distributions. However, as argued by Mookherjee and Shorrocks
(1982) it is less useful when there are multiple changes occurring simultaneously (as affected
single mothers over the past two decades) because it is difficult to determine the relative
importance of each factor to trend inequality, and the combined effects of the changes do not
necessarily sum up to total inequality, i.e. it is possible to over- or under-explain trend inequality
with shift-share analyses.

A preferred alternative is to adopt the decompositions described in equation (3) as it
aggregates changes in demographic factors exactly into the changes in total inequality; that is,
changes in within and between group inequality add up to changes in total inequality. We can
then decompose the changes in within-group and between-group inequality by taking the
difference in equation (3) between periods t and t+1 and rearranging to yield
(4) AL, = YF_y w(O) pp (DAL +
YK At + D[t + 1) +0.5] + XK wr (0)ApZ[1(t + 1) + 0.5]
which says that the change in inequality is due to (a) a change in within-group inequality (the
first term), (b) a change in population shares (the second term), and (c) a change in relative mean
income (the third term).* We present results for both cross-sectional inequality decompositions
from equation (3), as well as decompositions over time using equation (4). For completeness we
also present some shift-share decompositions to compare with the results from equation (4).

B. Income Factor Decompositions

As highlighted in Grogger (2003) and Bollinger, et al. (In press), there have been

substantial changes in the level and composition of income among single mothers over the past

* Mookherjee and Shorrocks (1982) note that there is an index number problem here in that the decomposition in
equation (5) uses current period values of population shares and (t+1) values of inequality and income shares, but it
is possible to reverse the order.



two decades. In order to assess whether this changing income composition affects trends in
changes in inequality we decompose disposable income-to-needs into four major factors

(5) V¢ = earnings;; + transfers;; + other;; — taxesj;,

where earnings refers to total labor market earnings in the family, transfers refers to income
from government provided means-tested transfers, disability insurance, and food assistance
programs, other refers to other nonlabor income from both public and private sources, and taxes
refers to the sum of federal, state, and payroll tax payments inclusive of the refundable portion of
the federal and state EITC. Shorrocks (1982) shows that the generalized entropy class of
inequality measures is additively decomposable into the contributions of income factors such as

described in equation (5), which implies that we can write I, as
(6) 12 = Z?:l Sfl

where f = earnings, transfers, other, taxes and Sy = py ?12. The term p¢ is the correlation
y

coefficient between factor f and total disposable income to needs y, o is the standard deviation
of income factor f, and g,, is the standard deviation of disposable income to needs. Note that the
product of the correlation coefficient and the ratio of the standard deviations is simply the
coefficient from a least squares regression of disposable income to needs on income factor f.

The advantage of I, is clear in equation (6) because the values of factor f may be zero for
many households, e.g. zero earnings for nonworkers or zero transfers for non welfare recipients,
and yet I, is still defined in these cases. Another advantage is that like the demographic analysis
above, changes in income factors add up to changes in total inequality. Specifically in the case
of determining how changes in income factors affect changes in inequality between any two
periods t and t+1 we can rewrite equation (6) as

(7) Al =L(t+1)—-L(t) = Zjél ASy.



Equation (7) says that the change in inequality across any two years is simply the sum of changes
in the factor components (Jenkins 1995).
I11. Data

The data are from the 1980-2006 waves (1979-2005 calendar years) of the March
Annual Social and Economic Study of the Current Population Survey (CPS). The unit of
observation is families headed by single women between the ages of 16 and 54 with dependent
children present under the age of 18. Single heads include never married women as well as those
divorced, separated, or widowed. In a bid to minimize measurement error in some of our
subgroup analyses we allocate each mother to one of forty-five five-year birth by education
cohorts, where three separate education groups of less than high school, high school graduate,
and more than high school are assembled, and drop cohort-education cells with fewer than 50
observations (Blundell et al. 1998).

The key variable of interest is after-tax family income-to-needs, defined as gross income
less net tax payments relative to the family-size and year-specific poverty threshold. For our
purpose gross income is the sum of family income and the imputed value of public food
assistance programs. Family income is the same as that used in official Census Bureau
calculations of poverty and inequality and includes earnings, Social Security (retirement,
disability, and survivors benefits), Supplemental Security Income, Unemployment Insurance,
workers’ compensation, AFDC/TANF and other forms of public cash welfare, veterans’
payments, pension income, rent/interest/dividend income, royalties, income from estates, trusts,
educational assistance, alimony, child support, assistance from outside the household, and other
income sources. We define earnings as total family earnings from wage and salary income, non-

farm self employment, and farm self employment. Because the Census Bureau defines a family
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as two or more persons related by birth, marriage, or adoption, family earnings contains earnings
of the mother as well as dependent children and other related adults such as a resident
grandparent. It does not contain earnings of cohabiting partners or other non-family members in
the household. We append to family income the (Census Bureau’s) imputed dollar value of
public food assistance programs, which includes the Food Stamp Program and the National
School Lunch and Breakfast Programs.

To construct after-tax total income we subtract tax payments from gross income and add
back refundable EITC income. Tax payments are the sum of Federal, state, and payroll taxes that
are estimated for each family in each year using the NBER TAXSIM program. The TAXSIM
module calculates Federal, state, and payroll marginal tax rates and tax payments using basic
information on labor income, taxable nonlabor income, dependents, and certain deductions such
as property tax payments and child care expenses.” The Federal and state taxes include the
respective EITC code for each tax year and state, thus allowing for the possibility of negative tax
payments. We assume that the family only bears the employee share of the payroll tax rate. To
control for changes in average family size over the twenty-seven years of our sample, we deflate
after-tax income by the family-size specific poverty threshold. Because the poverty thresholds
are updated each year for inflation, the measure of income to needs is in real terms.®

If the respondent refuses to supply earnings or transfer information, then the Census
Bureau uses a “hotdeck” imputation method to allocate income to those with missing data.
Bollinger and Hirsch (2006) argue that including allocated data generally leads to an attenuation

bias on estimated regression coefficients based on imputed data. Bollinger and Hirsch (2007)

® The CPS does not have information on certain inputs to the TAXSIM program such as annual rental payments,
child care expenses, or other itemized deductions. We set these values to zero when calculating the tax liability.

® The U.S. poverty thresholds have been critiqued over the years on many dimensions (Citro and Michael 1995),
including the quality of the adult equivalent scale used. All results presented here are robust to just deflating income
by the personal consumption expenditure deflator and not for family size.
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also show that, for women, there appears to be no selection bias for dropping employed women
who fail to report earnings. Hence, we follow their recommendation and drop those mothers
with allocated earnings or transfer income. In addition, Burkhauser, et al. (2007) recently showed
that the Gini coefficient and 90-10 ratio are sensitive to income top coding in the CPS. Because
the coefficient of variation, and thus I, is top sensitive, it is possible that our measure also is
affected by top coding in the CPS. Prior to 1995 the CPS assigned top-coded data a common
value (though this value varied across income sources, and at times, years), but starting in 1995
they assigned top-coded data the mean values of actual income based on broad demographic
groupings (age, race, gender, education). We examined the extent of top coding across all the
subcomponents of income in our sample of single mother families and in most years there were
no top-coded observations. However, top coding became more prevalent beginning in 1998,
which is consistent with Burkhauser, et al. results for earnings from the general population.
Although top coding never affected more than 0.2 percent of the sample of single mother
families in our sample, we believe a common convention post 1995 as pre 1995 is likely to be
more robust, and thus we impose the pre-1995 top codes on all subsequent years for our main
analysis.” We also delete about 0.7 percent of the sample who report negative or zero family
incomes, yielding a total sample of 99,436 single female-headed families. Basic summary
statistics are provided in Appendix Table 1.
IV.  Trends in Income Inequality of Single Mothers, 1979-2005

Figure 1 provides a basic overview of the trends in the mean and variance of disposable
income to needs for single mothers. Mean income rose 18 percent over our sample period, while
the variance rose nearly 80 percent. Both series show secular increases through the 1980s, but

accelerate dramatically in the 1990s, a period that coincides with a strong macroeconomic

" As shown below, top coding turns out to be an important issue, even for single mother families.
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expansion, large expansions in the EITC, as well as state and federal welfare reforms. Changes
in mean income for this population have been well documented in the welfare literature (Moffitt
2003; Grogger 2003; Bollinger, et al. (In Press)), but this is the first evidence on the trends in the
variability of income of single mothers. However, the variance is not scale invariant and as both
the mean and variance are rising, inequality as measured by I, will rise by less than the variance.
This is shown in Figure 2 where trends in inequality for disposable income-to-needs are
depicted. ® We also present the 95 percent confidence interval for I, constructed from 100
replications of the nonparametric bootstrap.

Figure 2 shows a trend increase in inequality of nearly 30 percent from 1979 to 2005, but
there were subperiods of increasing followed by decreasing inequality. From 1979 to 1987
inequality rose 42 percent, but then fell by 17 percent over the next five years by 1992. It then
accelerated over the next five years, reaching a within-period peak in 1997, and then subsided in
the ensuing years as mean income rose strongly as shown in Figure 1. Even though the 1, is
estimated precisely in each year, the 95 percent confidence interval depicted in the figure widens
markedly in the mid 1990s reflecting the increased variance of income.

Before proceeding we return to the issue of top coding raised by Burkhauser, et al.
(2007). In Figure 3 the series labeled “common top code” reproduces our original series in
Figure 2, and the series labeled “changing top code” refers to our estimate of I, using the Census
provided imputations post 1995. As Figure 3 indicates, top coding has no impact on measured
inequality prior to 1995, but after 1995 the series using the Census-provided top codes is
significantly more volatile. This is surprising because our prior was that top coding would not be

important for the population of single mothers even after 1995, but the results clearly reject that

® The inequality trends in both the real income level series and the income to needs series are identical, but in most
years the level of inequality is higher (but not statistically) once adjustments are made for family need standards.
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prior and indicate that adopting a common top code is necessary. We note, however, that our
choice of using the pre-1995 methods for dealing with top codes is likely to understate the rise in
inequality relative to the case if we used the post-1995 imputation method for the entire series.
The reason for this understatement is that as we show below there was strong growth in incomes
in the upper tail of the distribution over the past decade that is being attenuated with the use of
the fixed top code value.

Meyer and Sullivan (2006) also raise concerns about income reporting in the CPS, but
their focus is on the lower tail of the distribution where they argue that income is mismeasured
because of underreporting of transfer income, especially beginning in the mid 1990s. They show
that income fell about 30 percent at the 2" percentile across the 19931995 and 1997-2000
periods in the CPS, whereas consumption (as measured in the Consumer Expenditure Survey)
was relatively stable. They conclude that consumption is a superior measure of well being.®

Although a comparison of income to consumption is beyond the scope of the current
project, in Figure 4 we use our common top-coded series to depict various percentiles of the
income to needs distribution from the 2" percentile (p2) to the 99" percentile (p99). Like Meyer
and Sullivan (2006) we do find a 30 percent reduction in after-tax income in the late 1990s
(based on the underlying data in Figure 4), but we also find a 15 percent increase in after-tax
income at the 2" percentile when comparing the 1997—2000 and 2001-2004 periods. In Figure 4
we observe no discernable long-term downward trend in income at the low end of the
distribution. For example, the average income level at the 2" percentile is $533 from 1979-
1994 and it is a slightly higher $545 from 1995-2005. This suggests that relative to the issue of

top coding discussed above, transfer income underreporting is not likely to impart significant

° Though Bollinger (1998), using data in the CPS matched to Social Security records, shows that if anything the
poor overstate earnings in the CPS relative to administrative Social Security data.
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bias in our measures of inequality in the 1990s. At the same time Figure 4 does reveal evidence
of a strong upward trend in income beginning in the mid 1990s in the upper half of the
distribution. It appears that among single mother families rising inequality in the 1990s is an
phenomenon heavily concentrated in the upper tail of the income distribution similar to the trend
in the general population (Piketty and Saez 2003; Autor, et al. 2005).

A. Within versus Between Group Inequality

Table 1 showed that the demographic composition of single mothers changed
dramatically over the past several decades, and with the documented rise in inequality in Figure
2 for all single mothers pooled together, in this section we explore whether and to what extent
rising inequality cut across various demographic groups of lone mothers and the roles of within
and between group inequality. Table 2 presents trends in I, and the relative mean income of the
groups defined in equation (3). Across all major subgroups, nonworking single mothers had the
largest trend increase in inequality, and a concomitant large reduction in relative mean income.
This highlights growing instability among single mothers disconnected from the workforce
(Blank 2007). Other groups experiencing large increases in inequality include mothers who are
never married or separated, or who are white or other race. However, as reflected in equation (3)
whether inequality is due to inequality within groups or between groups depends on the
interaction of group-specific inequality, population share, and relative mean income.

Table 3 presents the average contributions of within and between-group inequality based
on education attainment, age, marital status, race, and employment status across the 1979-2005
period. For each panel in the table we depict the average of the 27 annual estimates of within-
and between-group inequality, and also show the contribution of each sub-group to within

inequality (e.g. the four estimates for within education group add up to the total
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(0.178=0.023+0.059+0.052+0.044)). Table 3 reveals that most of the inequality in a typical year
is accounted for by inequality within groups and not between groups. For example, inequality
within education groups accounts for 82 percent of the total, with more than high school
educated mothers being the largest contributor to within education group inequality. Likewise,
within employment status group inequality accounted for 87 percent of the total, and although
inequality within the group of non-workers increased more than any other group as shown in
Table 2, the declining population shares and relative incomes of non-workers fell more and thus
reduced non-workers contribution to overall inequality in Table 3. The other panels in the table
suggest a similar story in that nearly all of the inequality in a given year is due to within-group
inequality and very little is attributed to between group differences. Within-group inequality
among single mother families is most prominently affected by those with more than a high
school education, those age 31 and older, those widowed or divorced, and those who are white.
In Table 4 we record the results of the demographic change decompositions of equation
(4) across the entire sample period of 1979 to 2005 as well as across five-year intervals (we
include the extra period in the first change of 1979 to 1985). To facilitate comparisons across the

multiple changes, we divide both sides of equation (4) by the base year inequality 1,(1979) and

report the results as percentage changes.™® The bulk of the 27.5 percent rise in inequality is
attributed to a rise in within-group inequality regardless of the group selected to conduct the
decomposition. However, this is often because of large but offsetting changes in the two terms
affecting between-group inequality. For example, there was a large and disequalizing increase in
the share of single moms with college degrees (or at least some college) between 1979 and

2005—the “Murphy Brown” effect. However this higher educated mother with some college

19'In some cases rounding error after the calculations may result in some rows not adding up.
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placed lower on average in the 2005 distribution of income than she would have in 1979, and
thus there was an equalizing reduction in relative mean incomes that offset the pure population
share effect (see Table 2). A similar scenario unfolded based on employment status of single
mothers as well as past marital status. In the 1990s there was a substantial increase in the
contribution of employment to inequality, but some of these new workers were placed in the
lower end of the distribution and thus reducing the relative mean income of workers, which
equalized incomes in the overall population of single mothers. In the case of marital status, there
was an equalizing shift in the population toward never-married mothers, but their relative mean
incomes fell slightly compared to widowed, separated, and divorced mothers. Examining the
inequality changes across sub-periods reveals a similar trend in favor of within-group changes
being the prominent factor in changes in inequality. Again this is generally achieved because of
substantial offsetting changes in relative population shares and relative mean incomes. This
suggests that the time-series of cross-sectional decompositions of within- and between-group
inequality in Table 3 understates the role of important between group changes in inequality over
the past two decades arising from large shifts in education attainment, age, previous marital
status, and employment status.

The basic trends are confirmed in the shift-share analysis in Table 5. Here we conduct
the counterfactual experiments of predicting inequality in 1979 using equation (3) and assuming
that population shares, relative mean incomes, and group-specific inequalities alternatively take
on their respective 2005 values while holding the other terms fixed at the 1979 values. For
example, in 1979 our estimate of I, is 0.179, but if the population shares of single mothers across
education groups in 1979 were instead given their 2005 values then inequality would have been

more than double (0.352). Likewise, holding all else equal, if we replace the 1979 relative mean



17

incomes with their 2005 values then inequality would have been near zero (0.015); and if we
instead replaced the group-specific inequalities with the 2005 values then inequality is predicted
to be 0.23. The numbers in parentheses reflect the percentage of the actual change that is
captured by the predicted change in inequality (Jenkins 1995). Specifically, let I,(2005) be the

predicted inequality when replacing the 1979 values with their 2005 counterparts; then the

15,(2005)—1,(1979)
1,(2005)—1,(1979)

numbers in parentheses are 100% * ( ) Consistent with the robust

decompositions in Table 4, in Table 5 there is evidence of substantial between group changes
across education level, marital status, and employment status, but the shifts in population shares
are counteracted by shifts in relative mean incomes that are similar in magnitude but opposite in
direction, leaving the bulk of the change in inequality accounted for by within group changes
(the last column in Table 5).

B. Factor Decomposition of Inequality

How the demographic changes implicitly translate into the income factors underlying
inequality is depicted in Figure 5, which shows trends in the cross sectional decomposition of
disposable income-to- needs inequality into its factor shares based on equation (6).* Both
earnings and other nonlabor income lie above the x-axis because they are ‘disequalizing’ and
contribute to inequality, while transfers and taxes each lie below the x-axis as they are
‘equalizing’ factors in the distribution of income. Figure 5 shows that the bulk of after-tax
income to needs inequality in any given year emanates from earnings inequality in the labor
market. The major equalizer is the tax system, both through the refundable EITC and

progressive marginal tax rates—in a typical year the tax system reduced earnings inequality by

1 As with total income, we conduct our decomposition of factor shares based on residual earnings, transfers, other
nonlabor income, and taxes from a regression of each factor on a quartic in age. All income factors are adjusted by
needs prior to estimation.
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about one-third. Perhaps surprising, income transfers have never played a significant role in
reducing inequality among single mothers, averaging about 8 percent prior to the welfare reforms
of the mid 1990s, and about 4 percent after welfare reform. While this is a 50 percent reduction
it had little impact on overall inequality. We do note, though, that as shown in Table 2 non-
employed single mothers had the largest growth in inequality over the past decade, which could
in part be due to the loss of transfer income.

In Table 6 we present the results of the factor-specific changes in inequality from
equation (7) across the entire sample period of 1979 to 2005 as well as across five-year intervals
(again, we include the extra period in the first change of 1979 to 1985). As in Table 4, we divide

both sides of equation (7) by the base year inequality 1,(1979) and report the results as

percentage changes. In the first row of Table 6 we see that changes in earnings inequality drove
the nearly 30 percent increase in total income inequality over the past two and a half decades,
and in the absence of the U.S. tax system inequality would have been almost 5 percentage points
higher. Income transfers have a negligible effect on changes in inequality, and if anything are on
net disequalizing, reflecting the large reductions in program participation. The five-year
inequality change decompositions show considerable within-period variation in the relative roles
of earnings, transfers, other income, and taxes on inequality. In most subperiods inequality
would be significantly higher in the absence of income taxes, though there are some exceptions
in the periods surrounding the Tax Reform Act of 1986 and the 2001 and 2003 tax cuts.

The results in Figure 5 and Table 6 make transparent that the rising income inequality
among single mothers is driven by rising earnings inequality. With the influx of large numbers
of mothers into the labor force in the 1990s the higher earnings inequality may be due to a

compositional change of the workforce (Lemieux 2006), or it may simply reflect increased
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earnings dispersion of workers. That is, the variance of earnings depends on the relative role of
changes in the extensive margin of entry into employment and the intensive margin of earnings
conditional on being a worker. To see this possible interaction between the extensive and
intensive margins in the Appendix we show that the unconditional variance of earnings can be
written as

(8) VW)= E{WIP=1}2«Pr(P=1)*(1—-Pr(P=1))+ VIW|P=1)*Pr (P =1),
where W is earnings, P is an indicator variable equal to one if a single mother participates in the
labor force, and E is the expectations operator. The unconditional variance of earnings in
equation (8) contains two terms—the square of the conditional mean of earnings weighted by the
variance of the extensive employment margin (the probability of working times one minus that
probability), and the conditional variance of earnings among workers weighted by the probability
of working. Thus, the variance of earnings depends on whether the employment rate, the
conditional mean, and the conditional variance are rising, falling, or remaining the same. For

example, suppose that the mean and variance of earnings conditional on working are held
constant but the probability of working rises. If we assume that Pr(P = 1) > % then the first

term in equation (8) is falling, while the second term is rising. In fact, however, as discussed
previously both the conditional mean of earnings and the employment rate have been rising so it
is less clear cut a priori which of the two terms in equation (8) dominates.

In Figure 6 we present the decomposition of the unconditional earnings to needs variance
in equation (8) with the first term of the squared conditional mean represented on the left axis,
and both the conditional variance and total unconditional variance represented on the right axis.
The figure reveals that the unconditional variance has been increasing over the past two decades,

especially in the 1990s when it increased 50 percent between 1992 and 2005. This increased



20

earnings variance is largely driven by increases in the conditional variance of earnings. Notice
with the surge of single mothers into the labor force in the 1990s the squared conditional mean
weighted by the variance of the extensive employment margin (the first term in equation (8)) was
falling, and the conditional variance rose in response as predicted. In the 2000s with the onset of
the recession the employment rate of single mothers fell slightly, and both the conditional mean
and conditional variance of earnings leveled off. Although rising participation alone could cause
the earnings variance to increase, the story here is more complicated. The percentiles presented
in Figure 4 showed growing inequality in the upper half of the income distribution. This suggests
that high skilled single mothers in the labor force likely benefited from the rising premium to
skill documented extensively in the literature, which would increase the variance of earnings
over and above the participation effect (Autor, et al. 2005; Lemieux 2006).

A related issue is whether the higher earnings variance is driven by changes in the
variance of hourly wages or hours of work. In Figure 7 we depict trends in the variance of
average real hourly wages (deflated by the personal consumption deflator, not by needs
thresholds) on the left axis and variance of annual hours of work on the right axis.*? Figure 7
makes clear that the rising earnings variance for single mothers has been led by an increased
variance of average hourly wages since the mid 1990s. The variability of work hours actually
fell in the 1990s, which reflects in part the increase in full time working mothers. That
increasing earnings dispersion is caused by rising wage dispersion is consistent with the results
from the literature on men, the difference being that it took more than a decade longer for this

trend to affect single mothers.

12 For Figure 7 we restrict the sample to those mothers with average hourly earnings between $2 and $250. The
results were unduly influenced by some extreme outliers on each end of the distribution, and thus we trimmed the
data for ease of presentation.
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V. Conclusion

Over the past two and a half decades the demographic composition of single mothers has
changed dramatically to an older, more educated population, and the attendant composition of
their incomes has changed in kind. We examined whether and to what extent this shift of single
mothers to more closely resemble the fictional television character Murphy Brown translated into
changes in income inequality among single mothers. Our results suggested that disposable
income-to-needs inequality increased about 30 percent among single mothers in the United
States from 1979 to 2005. Further analysis indicated that most of the increase was manifested in
the form of higher within-group inequality rather than across demographic groups of mothers.
However, the role of between-group inequality was attenuated because of offsetting changes in
relative population shares and mean incomes across groups. In terms of income components, the
rise in income inequality was prominently a result of higher earnings inequality.

After-tax incomes of single mothers rose significantly between the mid 1990s and mid
2000s, ranging from 20 percent growth at the 25" percentile to nearly 40 percent growth at the
99" percentile. However, the rise in the cross-sectional variance swamps the increase in income
levels, which fueled the rise in inequality identified by the squared coefficient of variation. The
influx of single mothers into the labor force in the 1990s led to a rise in the conditional variance
of earnings, which likely reflected both the placement of these new workers at a lower point of
the income distribution as well as the rising premium to skill offered to those working women
with comparatively high skills. Indeed, much of the increase in income inequality comes from
the upper half of the income distribution. The combination of changing demographic
composition with rising upper tail inequality corroborates recent work on the wage inequality of

male and female workers both by Lemieux (2006), who emphasized demographic change, and
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Autor, et al. (2005), who emphasized upper-tail changes in the wage distribution. Another result
that corroborates the earlier research is that the increased earnings variance in the 1990s was
driven by a higher variance of hourly wages rather than hours of work. In short, the “Murphy
Brown” effect on the composition of single mothers in recent years suggests that the general
forces that will determine future changes in inequality of men and women are likely to translate

into similar changes in income inequality among single mothers.
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Appendix

In this appendix we provide a brief derivation of equation (8) in the text. To begin, the
unconditional variance of earnings, W, can be written as
(A1) V(W)= V(E{WIPYH + Ev(W|P)},
which is the sum of the variance of the conditional mean of earnings and the expected
conditional variance (where E is the expectations operator). The first term in equation (A.1) is
the variance of the conditional mean of earnings, and noting that E{W|P = 0} = 0 we can write
the first term as
(A2) V(E(W|P}) = (E{W|P =1} — E(W}2 *Pr(P = 1) + E{W}?  Pr (P = 0).
Since E{W} = E{W|P = 1}*Pr(P = 1) + E{W|P = 0} * Pr(P = 0) = E{W|P = 1} *
Pr (P = 1), the first and second terms in (A.2) simplify and combine to become E{W|P = 1}? x
Pr(P=1)* (1 —-Pr(P =1)).

Likewise, noting that V(W |P = 0) = 0 we can write the second term in equation (A.1)
as
(A3) E{V(W|P)}=V(W|P =1)*Pr (P = 1),

and substituting (A.2) and (A.3) into (A.1) yields equation (8) of the text.
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The Role of Top Coding on Trends in After-Tax Income to
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Table 1: Trends in Population Shares for Selected Groups of Single Mothers

Education Level
Less than 12
High School
Between 12 & 16
At least 16

Age
Under age 30
Age 31-40
Over age 40

Marital Status
Separated
Widowed/divorced
Never married

Race
White
Black
Other race

Employment Status
Worker
Non-worker

1979 1985 1990 1995 2000 2005
0.371 0.300 0.276 0.231 0.180  0.169
0.413 0.433 0.436 0.342 0.349  0.337
0.147 0.183 0.190 0.318 0.342  0.352
0.069 0.084 0.098 0.109 0.129  0.142
0.374 0.362 0.343 0.316 0.318  0.298
0.390 0.435 0.441 0.430 0391  0.377
0.236 0.203 0.216 0.254 0291  0.325
0.243 0.222 0.212 0.196 0.142  0.132
0.577 0.523 0.480 0.460 0.455  0.436
0.180 0.255 0.308 0.344 0.403  0.431
0.692 0.695 0.681 0.700 0.699  0.683
0.279 0.279 0.280 0.258 0.256 0.250
0.028 0.027 0.039 0.042 0.045  0.067
0.767 0.710 0.727 0.774 0.875  0.836
0.233 0.290 0.273 0.226 0.125  0.164




Table 2: Trends in Inequality and Relative Means for Selected Groups

Less than 12

High School

Between 12 & 16

At least 16
Under age 30
Age 31-40
Over age 40

Separated

Widowed/divorced

Never married

White

Black

Other race

Worker

Non-worker

0.5*CV?
Relative Mean
0.5*CV?
Relative Mean
0.5*CV?
Relative Mean
0.5*CV?
Relative Mean
0.5*CV?
Relative Mean
0.5*CV?
Relative Mean
0.5*CV?
Relative Mean
0.5*CV?
Relative Mean
0.5*CV?
Relative Mean
0.5*CV?
Relative Mean
0.5*CV?
Relative Mean
0.5*CV?
Relative Mean
0.5*CV?
Relative Mean
0.5*CV?
Relative Mean
0.5*CV?
Relative Mean

1979 1985 1990 1995 2000 2005
0.159 0.295 0.186 0.351 0.298 0.211
0.747 0.680 0.679 0.676 0.663 0.651
0.137 0.157 0.209 0.171 0.171 0.177
1.060 0.993 0.990 0.923 0.899 0.844
0.151 0.148 0.143 0.198 0.136 0.156
1.212 1.217 1.153 1.110 1.072 1.057
0.125 0.138 0.159 0.174 0.131 0.160
1.544 1.702 1.653 1.610 1.551 1.643
0.092 0.140 0.137 0.100 0.127 0.109
1.061 1.003 0.992 0.975 1.010 0.978
0.167 0.216 0.242 0.313 0.199 0.206
1.001 1.048 1.028 1.008 0.986 0.973
0.365 0.412 0.351 0.311 0.276 0.332
0.901 0.891 0.956 1.018 1.007 1.052
0.169 0.286 0.262 0.432 0.217 0.264
0.804 0.834 0.851 0.859 0.870 0.863
0.174 0.199 0.229 0.219 0.217 0.235
1.106 1.117 1.138 1.136 1.112 1.136
0.115 0.195 0.152 0.174 0.140 0.167
0.925 0.905 0.887 0.899 0.920 0.905
0.168 0.205 0.226 0.257 0.195 0.232
1.086 1.071 1.071 1.059 1.053 1.044
0.154 0.254 0.195 0.196 0.187 0.186
0.806 0.825 0.839 0.852 0.883 0.900
0.150 0.195 0.254 0.177 0.207 0.213
0.799 0.990 0.912 0.932 0.847 0.927
0.148 0.187 0.176 0.210 0.164 0.173
1.114 1.145 1.146 1.131 1.083 1.113
0.150 0.188 0.313 0.169 0.298 0.423
0.626 0.644 0.610 0.551 0.420 0.422




Table 3: Between Group and Within Group After-Tax Income-to-Needs Inequality

Overall Between Within

Education 0.216 0.038 0.178
<12 0.023

12 0.059

>12 &< 16 0.052

>=16 0.044

Age 0.216 0.001 0.215
<30 0.037

31-40 0.093

> 40 0.085

Marital Status 0.216 0.007 0.209
Separated 0.035
Widowed/Divorced 0.133
Never Married 0.041

Race 0.216 0.005 0.212
White 0.166

Black 0.038

Other 0.008
Employment Status 0.216 0.028 0.188
Worker 0.171
Non-Worker 0.017

Note: The numbers in the table are averages across the 27 annual estimates of within and between group inequality.



Table 4: Decomposition of Percentage Changes in Income-to-Needs Inequality by Subgroups

Total Period
1979-2005

Five-Year Change
1979-1985
1985-1990
1990-1995
1995-2000
2000-2005

Total Period
1979-2005

Five-Year Change
1979-1985
1985-1990
1990-1995
1995-2000
2000-2005

Total Period
1979-2005

Five-Year Change
1979-1985
1985-1990
1990-1995
1995-2000
2000-2005

Education Level

Percent Change in I,

Changes in within-
group inequality

Changes in
population shares

Changes in relative
mean income

27.50 20.50 103.50 -96.40
26.28 22.10 28.00 -23.70
3.80 6.10 14.40 -16.80
11.40 13.10 32.70 -34.30
-28.70 -23.90 19.50 -24.30
14.80 6.60 11.80 -3.90
Age
Changes in within- Changes in Changes In relative

Percent Change in |,

group inequality

population shares

mean income

27.50 9.10 16.40 2.10
26.28 27.40 2.20 -3.20
3.80 0.90 1.70 1.10
11.40 7.30 4.30 -0.10
-28.70 -28.90 2.30 -1.90
14.80 7.50 5.80 1.40
Marital Status
Changes in within- Changes in Changes In relative

Percent Change in I,

group inequality

population shares

mean income

27.50

26.28
3.80
11.40
-28.70
14.80

37.30

27.20
4.10
14.30
-23.80
13.80

-33.50

-9.00
-10.60
-5.80
-1.00
-4.50

23.90

8.10
10.10
3.00
-3.90
5.40




Table 4 continued: Decomposition of Percentage Changes in Income-to-Needs Inequality by Subgroups

Race

Percent Change in I,

Changes in within-
group inequality

Changes in
population shares

Changes In relative
mean income

Total Period
1979-2005

Five-Year Change
1979-1985
1985-1990
1990-1995
1995-2000
2000-2005

27.50

26.28
3.80
11.40
-28.70
14.80

33.80 0.00
28.00 0.20

4.10 -1.80
12.40 3.90
-27.80 -0.20
16.00 -1.50

Employment Status

-6.20

-2.00
1.30
-4.90
-0.60
0.20

Percent Change in |,

Changes in within- Changes in
group inequality population shares

Changes In relative
mean income

Total Period
1979-2005

Five-Year Change
1979-1985
1985-1990
1990-1995
1995-2000
2000-2005

27.50

26.28
3.80
11.40
-28.70
14.80

27.70 26.30
22.80 -19.90
3.10 5.80
9.90 18.70
-20.90 36.50
7.10 -14.80

-26.40

23.50
-5.30
-17.20
-44.10
22.40

Note: The decompositions as calculated add up exactly, but some rows may not because of rounding error in

converting to percentages.



Table 5: Shift-Share Analysis of After-Tax Income-to-Needs Inequality

1979 Inequality = 0.176 2005 Inequality = 0.224

Predicted 1979 Inequality if Change to
2005 Population Share 2005 Relative Mean 2005 Group-Specific Inequality

Education 0.352 0.015 0.23
(362) (-331) (111)
Age 0.179 0.184 0.191
(7) (16) (30)
Marital Status 0.144 0.214 0.241
(-65) (77) (133)
Race 0.172 0.167 0.229
(-8) (-18) (109)
Employment Status 0.214 0.143 0.236
(78) (-68) (124)

Note: The shift share analysis is based on equation (3) and holds other factors constant at their 1979 values and
replaces successively each of the three components with their respective 2005 values. The number in parentheses is
the percentage of the ratio of the difference between the predicted inequality and the actual 1979 inequality over the
difference between the actual 2005 and 1979 inequality values.



Table 6: Decomposition of Percentage Changes in Income-to-Needs Inequality by Income Source

Total Period
1979-2005

Five-Year Change
1979-1985
1985-1990
1990-1995
1995-2000
2000-2005

Percent Change in |,

Contribution of earnings

Contribution of transfers

Contribution of other income Contribution of taxes

27.50

26.28
3.80
11.40
-28.70
14.80

30.20

24.10
3.40
16.40
-23.50
9.70

1.90

-3.40
0.40
1.70
4.70

-1.40

0.20

22.80
-12.20
6.90
-20.70
3.40

-4.80

-17.22
12.20
-13.60
10.80
3.10

Note: The decompositions as calculated add up exactly, but some rows may not because of rounding error in converting to percentages.



Appendix Table 1: Summary Statistics

Mean Standard Deviation
After-Tax Income 23030 16168
After-Tax Income to Needs 1.49 1.06
Earnings 18174 20725
Transfers 4195 5933
Other Nonlabor Income 3184 8031
Taxes 2523 6632
Less than High School 0.25 0.43
High School or Equivalent 0.38 0.49
Some College 0.26 0.44
At least 16 years 0.11 0.31
Age 34.70 8.14
Race is White 0.69 0.46
Race is Black 0.27 0.44
Other Race 0.04 0.21
Separated 0.19 0.39
Widowed/Divorced 0.49 0.50
Never Married 0.33 0.47

Observations 99,436






